Have a personal or library account? Click to login
On Chasles' Property of the Helicoid in Tri-Twisted Real Ambient Space Cover
Open Access
|Apr 2017

References

  1. [1] J. Bernstein and Ch. Breiner - Distortions of the helicoid, Geom. Dedicata 137(2008), 143-147.10.1007/s10711-008-9290-9
  2. [2] D. E. Blair and Th. Koufogiorgios - Ruled surfaces with vanishing second Gaussian curvature, Monat. Math. 113(1992), 177-181.10.1007/BF01641765
  3. [3] E. Catalan - Sur les surfaces reglées dont l'aire est un minimum, J. Math. Pures et Appl., 7(1842), 203-212.
  4. [4] B.-Y. Chen - Geometry of submanifolds, M. Dekker, New York, 1973.
  5. [5] B.-Y. Chen - Total mean curvature and submanifolds of finite type, World Scientific, New Jersey, 1984.10.1142/0065
  6. [6] B.-Y. Chen - Geometry of submanifolds and its applications, Science University of Tokyo, 1981.
  7. [7] B.-Y. Chen - When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110 (2003) No.2, 147-152.10.1080/00029890.2003.11919949
  8. [8] B.-Y. Chen - Pseudo-Riemannian submanifodls, δ-invariants and Applications , World Scientific, 2011.10.1142/8003
  9. [9] C. J. Costa - Example of a complete minimal immersion in R3 of genus one and three embedded ends, Bull. Soc. Bras. Mat., 15(1984), 47-54.10.1007/BF02584707
  10. [10] D. Hoffman and W. H. Meeks III - Complete embedded minimal surfaces of finite total curvature, Bull. Amer. Math. Soc. 12(1985), 134-136.10.1090/S0273-0979-1985-15318-2
  11. [11] D. Hoffman and W.H. Meeks III - Embedded minimal surfaces of finite topology, Ann. of Math., 131(1990), 1-34.10.2307/1971506
  12. [12] D. Hilbert - Über den Satz von der Gleichheit der Basiswinkel im gleichschenkligen Dreieck, Proc. London Math. Soc. 35(1902/1903), 50-68.10.1112/plms/s1-35.1.50
  13. [13] D. Hilbert and S. Cohn-Vossen - Geometry and the Imagination, translated by P. Nemenyi, AMS Chelsea Publishing, 1999 edition.
  14. [14] K. Kenmotsu - Surfaces with Constant Mean Curvature, Translations of Math. Monographs, vol. 221, American Math. Soc., 2003.10.1090/mmono/221
  15. [15] T.-T. Li (editor) - Problems and solutions in mathematics, World Scientific, 1998.
  16. [16] J. B. M. Meusiner - Mémoire sur la courbure des surfaces, Mém. des savans étrangers 10 (read in 1776, print 1785), 477-510.
  17. [17] W. H. Meeks III and M. Weber - Bending the helicoid, Math. Ann. 339(2007), 783-798.10.1007/s00208-007-0120-4
  18. [18] B. O'Neill - Semi-Riemannian geometry with applications to relativity, Academic Press, San Diego, 1983.
  19. [19] V. Pambuccian - Euclidean geometry problems rephrased in terms of midpoints and pointreections, Elem. Math. 60(2005) 19-24.10.4171/em/3
  20. [20] R. Ponge and H. Reckziegel - Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, 48(1993), 15-25.10.1007/BF01265674
  21. [21] A. Pressley - Elementary diérential geometry, second edition, Springer Verlag, 2010.10.1007/978-1-84882-891-9
  22. [22] M. Spivak - A Comprehensive Introduction to Diérential Geometry, Third edition, Publish or Perish, 1999.
  23. [23] D. J. Struik - Lectures on Classical Diérential Geometry, second edition, reprint of the 1950 edition, Dover, 1988.
DOI: https://doi.org/10.1515/auom-2015-0030 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 121 - 132
Submitted on: Sep 17, 2013
Accepted on: Dec 2, 2013
Published on: Apr 22, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Peter T. Ho, Lucy H. Odom, Bogdan D. Suceavă, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.