Have a personal or library account? Click to login
A Criterion for linear independence of infinite products Cover

References

  1. [1] Erdős P, Some Problems and Results on the Irrationality of the Sum of Infinite Series, J. Math. Sci. 10 (1975), 1-7.10.1007/BF00541025
  2. [2] Erdős P, Erdős problem no. 6, 1995 Prague Midsummer Combinatorial Workshop, KAM Series (95-309), M. Klazar (ed.), (1995), page 5.
  3. [3] Hančl J., A criterion for linear independence of series, Rocky Mountain J. Math. 34, no. 1, (2004), 173{186.10.1216/rmjm/1181069897
  4. [4] Hančl J., Kolouch O, Erdős' method for determining the irrationality of products, Bull. Aust. Math. Soc. 84, no. 3, (2011), 414-424.10.1017/S0004972711002309
  5. [5] Hančl J., Sobková S, Special linearly unrelated sequences, J. Math. Kyoto Univ., vol. 46, no. 1, (2006), 31-45.10.1215/kjm/1250281795
  6. [6] Nishioka K, Mahler functions and transcendence, Lecture notes in mathematics 1631, Springer, (1996).10.1007/BFb0093672
  7. [7] Šustek J, New bounds for irrationality measures of some fast converging series, Mathematics for Applications, vol. 3, no. 2, (2014), 167-175.10.13164/ma.2014.12
DOI: https://doi.org/10.1515/auom-2015-0029 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 107 - 120
Submitted on: Oct 1, 2013
Accepted on: Dec 1, 2013
Published on: Apr 22, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Jaroslav Hančl, Ondřej Kolouch, Lukáš Novotný, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.