Flandrin, P., Rilling, G. and Goncalvés, P. (2004). Empirical Mode Decomposition as a Filter Bank, IEEE SIGNAL PROCESSING LETTERS, Vol. 11, No. 2, 112-114.
Gambis, D. and Luzum, B. (2011). Earth Rotation Monitoring, UT1 Determination and Prediction. Metrologia, Vol. 48, No. 4, 165-170.10.1088/0026-1394/48/4/S06
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998). The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proceedings of the Royal Society London: A, Vol. 454, 903-995.10.1098/rspa.1998.0193
Huang, N.E., Wu, M.L., Qu, W., Long, S.R. and Shen, S.S.P.H. (2003). Application of Hilbert-huang Transform to Non-Stationary Financial Time Series Analysis. Applied Stochastic Models in Business and Industry, Vol. 19, No. 3, 245-268.
Kalarus, M., Kosek, W., Schuh, H. (2008). Summary of the Earth Orientation Parameters Prediction Comparison Campaign. EGU General Assembly 2008, EGU abstract: EGU2008-A-00595.
Kalarus, M., Schuh, H., Kosek, W., Akyilmaz, O. and Bizouard, Ch. (2010). Achievements of the Earth Orientation Parameters Prediction Comparison Campaign. Journal of Geodesy, Vol. 84, No. 10, 587-596.10.1007/s00190-010-0387-1
Kosek, W., Kalarus, M., Johnson, T.J., Wooden, W.H., McCarthy, D.D. and Popiński, W. (2005). A Comparison of LOD and UT1-UTC Forecasts by Different Combined Prediction Techniques. Artificial Satellites, Vol. 40, No. 2, 119-125.
Lei, Y., Zhao, D.N. and Cai, H.B. (2015). Extreme Learning Machines for the Predictions of Length of Day. Artificial Satellites, Vol. 50, No. 1, 19-33.10.1016/j.geog.2014.12.007
Liao, D.C., Wang, Q.J., Zhou, Y.H., Liao, X.H. and Huang, C. L. (2012). Long-term Prediction of the Earth Orientation Parameters by the Artificial Neural Network Technique. Journal of Geodynamics, Vol. 62, No. 8, 87-92.
Park, J. and Sandberg, I.W. (1991). Universal Approximation Using Radial-Basis-Function Networks. Neural Computing, Vol. 3, No. 2, 246-257.10.1162/neco.1991.3.2.24631167308
Schuh, H., Ulrich, M., Egger, D., Müller, J. and Schwegmann, W. (2002). Prediction of Earth Orientation Parameters by Artificial Neural Networks. Journal of Geodesy, Vol. 76, No. 5, 247-258.10.1007/s00190-001-0242-5
Wang, Q.J., Du, Y.N. and Liu, J. (2014). Introducing Atmospheric Angular Momentum into Prediction of Length of Day Change by Generalized Regression Neural Network Model. Journal of Central South University, Vol. 21, No. 4, 1396-1401.
Zhang, X.H., Wang, Q.J., Zhu, J.J. and Zhang, H. (2012). Application of General Regression Neural Network to the Prediction of LOD Change. Chinese Astronomy and Astrophysics, Vol. 36, No. 1, 86-96.