Have a personal or library account? Click to login
Extreme Learning Machine for the Predictions of Length of Day Cover

Extreme Learning Machine for the Predictions of Length of Day

By: Lei Yu,  Danning Zhao and  Hongbing Cai  
Open Access
|Mar 2015

References

  1. Akyilmaz O., Kutterer H. (2004) Prediction of Earth rotation parameters by fuzzy inference systems. Journal of Geodesy, Vol. 78, No. 1-2, 2004, pp. 82-93.10.1007/s00190-004-0374-5
  2. Akyilmaz O., Kutterer H., Shum CK. and Ayan T. (2011) Fuzzy-wavelet based prediction of Earth rotation parameters. Applied Soft Computing, Vol. 11, No. 1, 2011, pp. 837-841.10.1016/j.asoc.2010.01.003
  3. Gross RS., Marcus SL., Eubanks TM., Dickey JO. and Keppenne CL. (1996) Detection of an ENSO signal in seasonal length-of-day variations. Geophysical Research Letters, Vol. 23, No. 23, 1996, pp. 3373-3376.
  4. Gross RS., Eubanks TM., Steppe JA., Freedman AP., Dickey JO. and Runge TF. (1998) A Kalman-filter-based approach to combining independent Earth-orientation series. Journal of Geodesy, Vol. 72, No. 4, 1998, pp. 215-235.
  5. Huang GB., Zhu QY. and Siew CK. (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. Proceedings of 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, pp. 985-990.
  6. Huang GB., Zhu QY. and Siew CK. (2006) Extreme learning machine: theory and applications, Neurocomputing, Vol. 70, No. 1-3, 2006, pp. 489-501.
  7. Johnson T., Luzum BJ., Ray JR. (2005) Improved near-term Earth rotation predictions using atmospheric angular momentum analysis and forecasts. Journal of Geodynamics, Vol. 39, No. 3, 2005, pp. 209-221.10.1016/j.jog.2004.10.004
  8. Kalarus M., Schuh H., Kosek W., et al. (2010) Achievements of the Earth orientation parameters prediction comparison campaign. Journal of Geodesy, Vol. 84, No. 10, 2010, pp. 587-596.10.1007/s00190-010-0387-1
  9. Kosek W., McCarthy DD. and Luzum BJ. (1998) Possible improvement of Earth orientation forecast using autocovariance prediction procedures. Journal of Geodesy, Vol. 72, No. 4, 1998, pp. 189-199.
  10. Malkin Z., Skurikhina E. (1996) On prediction of EOP, Communications of IAA, No. 93.
  11. Niedzielski T., Kosek W. (2008) Prediction of UT1-UTC, LOD and AAM by combination of least-squares and multivariate stochastic methods. Journal of Geodesy, Vol. 82, No. 2, 2008, pp. 83-92. Petit G., Luzum B. (2010) IERS Conventions (2010). Verlag des Bundesamts für Kartographie und Geodasie, Frankfurt am Main, pp. 123-131.
  12. Schuh H., Ulrich M., Egger D., Müller J. and Schwegmann W. (2002) Prediction of Earth orientation parameters by artificial neural networks. Journal of Geodesy, Vol. 76, No. 5, 2002, pp. 247-258.10.1007/s00190-001-0242-5
  13. Xu XQ., Zotov L. and Zhou YH. (2012) Combined prediction of Earth orientation parameters. Chinese Satellite Navigation Conference (CSNC) 2012 Proceedings, Lecture Notes in Electrical Engineering 160, pp. 361-369.
  14. Zhang XH., Wang QJ., Zhu JJ. and Zhang H. (2012) Application of general regression neural network to the prediction of LOD change. Chinese Astronomy and Astrophysics, Vol. 36, No. 1, 2012, pp. 86-96.
DOI: https://doi.org/10.1515/arsa-2015-0002 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 19 - 33
Submitted on: Nov 14, 2014
Accepted on: Feb 27, 2015
Published on: Mar 1, 2015
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Lei Yu, Danning Zhao, Hongbing Cai, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.