Have a personal or library account? Click to login
Impact of calcination temperature, organic additive percentages, and testing temperature on the rheological behaviour of dried sewage sludge Cover

Impact of calcination temperature, organic additive percentages, and testing temperature on the rheological behaviour of dried sewage sludge

Open Access
|Dec 2024

References

  1. Vesilind PA. Treatment and disposal of wastewater sludges. 2nd edn. Michigan: Ann Arbor Science; 1979.
  2. Hall JE, ed. Alternative uses for sewage sludge. Proceedings of a conference organised by Wrc Medmenham and held at the university of York. 1989 Sept 5–7. York, UK. Oxford: Pergamon Press; 1991.
  3. Outwater A, Tansel B. Reuse of sludge and minor wastewater residuals. 1st edn. Florida: CRC Press; 1994.
  4. Hing CL, Zenz DR, Tata P, Kuchenrither R, Malina Jr JF, Sawyer B. Municipal sewage sludge management: A reference text on processing, utilization and disposal. 2nd edn. Basel: CRC Press; 1998.
  5. Dhir RK, Limbachiya MC, McCarthy MJ. Recycling and reuse of sewage sludge. Proceedings of the international symposium organised by concrete technology unit and held at the university of Dundee. 2001 March 19–20. Dundee, Scotland, UK. London: Thomas Telford Ltd; 2001.
  6. Twardowska I, Schramm KW, Berg K. Sewage sludge. In: Twardowska I, editor. Solid waste: Assessment, monitoring and remediation. Oxford: Elsevier; 2004. p. 239–95.
  7. Sanin FD, Clarkson WW, Vesilind PA. Sludge engineering: The treatment and disposal of wastewater sludges. 1st edn. Pennsylvania: DEStech Publications; 2011.
  8. Guangyin Z, Youcai Z. Pollution control and resource recovery for sewage sludge. 1st edn. Oxford: Butterworth-Heinemann, Elsevier; 2017.
  9. Prasad MNV, de Campos Favas PJ, Vithanage M, Mohan SV. Industrial and municipal sludge: Emerging concerns and scope for resource recovery. 1st edn. Oxford: Butterworth-Heinemann, Elsevier; 2019.
  10. Zhang S, Wang F, Mei Z, Lv L, Chi Y. Status and development of sludge incineration in China. Waste Biomass Valoriz. 2021;12(7):3541–74. 10.1007/s12649-020-01217-9.
  11. Rajput VD, Yadav AN, Jatav HS, Singh SK, Minkina T. Sustainable management and utilization of sewage sludge. 1st edn. Switzerland: Springer Cham; 2022.
  12. Khan S, Naushad M, Al-Gheethi A, Iqbal J. Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies. J Environ Chem Eng. 2021;9(5):106160. 10.1016/j.jece.2021.106160.
  13. Hoang SA, Bolan N, Madhubashani AMP, Vithanage M, Perera V, Wijesekara H, et al. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. Environ Pollut. 2022;293:118564. 10.1016/j.envpol.2021.118564.
  14. Hyrycz M, Ochowiak M, Krupińska A, Włodarczak S, Matuszak M. A review of flocculants as an efficient method for increasing the efficiency of municipal sludge dewatering: Mechanisms, performances, influencing factors and perspectives. Sci Total Environ. 2022;820:153328. 10.1016/j.scitotenv.2022.153328.
  15. Zhu Y, Zhai Y, Li S, Liu X, Wang B, Liu X, et al. Thermal treatment of sewage sludge: A comparative review of the conversion principle, recovery methods and bioavailability-predicting of phosphorus. Chemosphere. 2022;291:133053. 10.1016/j.chemosphere.2021.133053.
  16. Weiner RF, Matthews RA. Hazardous waste. In: Weiner RF, Matthews RA, editors. Environmental engineering. Oxford: Butterworth-Heinemann, Elsevier; 2003. 295–311.
  17. Smith SR. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int. 2009;35(1):142–56. 10.1016/j.envint.2008.06.009.
  18. Lynn CJ, Dhir RK, Ghataora GS. Environmental impacts of sewage sludge ash in construction: Leaching assessment. Resour Conserv Recycl. 2018;136:306–14. 10.1016/j.resconrec.2018.04.029.
  19. Tarpani RRZ, Alfonsín C, Hospido A, Azapagic A. Life cycle environmental impacts of sewage sludge treatment methods for resource recovery considering ecotoxicity of heavy metals and pharmaceutical and personal care products. J Environ Manage. 2020;260:109643. 10.1016/j.jenvman.2019.109643.
  20. Krishna D, Sachan HK, Jatav HS. Management of sewage sludge for environmental sustainability. In: Rajput VD, Yadav AN, Jatav HS, Singh SK, Minkina T, editors. Sustainable management and utilization of sewage sludge. Switzerland: Springer Cham; 2022. p. 353–81.
  21. Kwapinski W, Kolinovic I, Leahy JJ. Sewage sludge thermal treatment technologies with a focus on phosphorus recovery: a review. Waste Biomass Valoriz. 2021;12(11):5837–52. 10.1007/s12649-020-01280-2.
  22. Kacprzak M, Neczaj E, Fijałkowski K, Grobelak A, Grosser A, Worwag M, et al. Sewage sludge disposal strategies for sustainable development. Environ Res. 2017;156:39–46. 10.1016/j.envres.2017.03.010.
  23. Kominko H, Gorazda K, Wzorek Z. Effect of sewage sludge-based fertilizers on biomass growth and heavy metal accumulation in plants. J Environ Manage. 2022;305:114417. 10.1016/j.jenvman.2021.114417.
  24. Zhang H, Qi HY, Zhang YL, Ran DD, Wu LQ, Wang HF, et al. Effects of sewage sludge pretreatment methods on its use in agricultural applications. J Hazard Mater. 2022;428:128213. 10.1016/j.jhazmat.2022.128213.
  25. Đurđević D, Blecich P, Jurić Ž. Energy recovery from sewage sludge: The case study of Croatia. Energies. 2019;12(10):1–19. 10.3390/en12101927.
  26. Zamparas M. The role of resource recovery technologies in reducing the demand of fossil fuels and conventional fossil-based mineral fertilizers. In: Kyriakopoulos GL, editor. Low carbon energy technologies in sustainable energy systems. Oxford: Academic Press, Elsevier; 2021. p. 3–24.
  27. Istuque DB, Soriano L, Akasaki JL, Melges JLP, Borrachero MV, Monzó J, et al. Effect of sewage sludge ash on mechanical and microstructural properties of geopolymers based on metakaolin. Constr Build Mater. 2019;203:95–103. 10.1016/j.conbuildmat.2019.01.093.
  28. Payá J, Monzó J, Borrachero MV, Soriano L. Sewage sludge ash. In: de Brito J, Agrela F, editors. New trends in eco-efficient and recycled concrete. Cambridge: Woodhead Publishing Elsevier; 2019. p. 121–52.
  29. Zat T, Bandieira M, Sattler N, Segadāes AM, Cruz RCD, Mohamad G, et al. Potential re-use of sewage sludge as a raw material in the production of eco-friendly bricks. J Environ Manage. 2021;297:113238. 10.1016/j.jenvman.2021.113238.
  30. Fink J. Cement additives. In: Fink J, editor. Petroleum engineer’s guide to oil field chemicals and fluids. Gulf Oxford: Professional Publishing; 2021. p. 441–92.
  31. Kumar M, Shreelaxmi P, Kamath M. Review on characteristics of sewage sludge ash and its partial replacement as binder material in concrete. In: Das BB, Nanukuttan SV, Patnaik AK, Panandikar NS, editors. Recent trends in civil engineering. Singapore: Springer; 2021. p. 65–78.
  32. Rozada F, Calvo LF, García AI, Villacorta JM, Otero M. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresour Technol. 2003;87(3):221–30. 10.1016/S0960-8524(02)00243-2.
  33. Dutta S, Gupta B, Srivastava SK, Gupta AK. Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv. 2021;2(14):4497–31. 10.1039/D1MA00354B.
  34. Kumar RV, Goswami L, Pakshirajan K, Pugazhenthi G. Dairy wastewater treatment using a novel low cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models. J Water Process Eng. 2016;13:168–75. 10.1016/j.jwpe.2016.08.012.
  35. Mouratib R, Achiou B, El Krati M, Younssi SA, Tahiri S. Low-cost ceramic membrane made from alumina- and silica-rich water treatment sludge and its application to wastewater filtration. J Eur Ceram Soc. 2020;40(15):5942–50. 10.1016/j.jeurceramsoc.2020.07.050.
  36. Behn VC. Experimental determination of sludge flow parameters. J San Eng Div. 1962;88(3):39–54. 10.1061/JSEDAI.0000386.
  37. Campbell HW, Crescuolo PJ. The use of rheology for sludge characterization. Water Sci Technol. 1982;14(6–7):475–89. 10.2166/wst.1982.0120.
  38. Spinosa L. Technological characterization of sewage sludge. Waste Manage Res. 1985;3(4):389–98. 10.1016/0734-242X(85)90132-6.
  39. Lotito V, Spinosa L, Mininni G, Antonacci R. The rheology of sewage sludge at different steps of treatment. Water Sci Technol. 1997;36(11):79–85. 10.1016/S0273-1223(97)00672-0.
  40. Baudez JC, Ayol A, Coussot P. Practical determination of the rheological behavior of pasty biosolids. J Environ Manage. 2004;72(3):181–8. 10.1016/j.jenvman.2004.04.011.
  41. Baudez JC. Physical aging and thixotropy in sludge rheology. Appl Rheol. 2008;18(1):13459–66. 10.1515/arh-2008-0003.
  42. Baudez JC, Slatter P, Eshtiaghi N. The impact of temperature on the rheological behaviour of anaerobic digested sludge. Chem Eng J. 2013;215–216:182–7. 10.1016/j.cej.2012.10.099.
  43. Ratkovich N, Horn W, Helmus FP, Rosenberger S, Naessens W, Nopens I, et al. Activated sludge rheology: A critical review on data collection and modeling. Water Res. 2013;47(2):463–82. 10.1016/j.watres.2012.11.021.
  44. Eshtiaghi N, Markis F, Yap SD, Baudez JC, Slatter P. Rheological characterisation of municipal sludge: A review. Water Res. 2013;47(15):5493–510. 10.1016/j.watres.2013.07.001.
  45. Lotito V, Lotito AM. Rheological measurements on different types of sewage sludge for pumping design. J Environ Manage. 2014;137:89–96. 10.1016/j.jenvman.2014.02.005.
  46. Hong E, Yeneneh AM, Sen TK, Ang HM, Kayaalp A. A comprehensive review on rheological studies of sludge from various sections of municipal wastewater treatment plants for enhancement of process performance. Adv Colloid Interface Sci. 2018;257:19–30. 10.1016/j.cis.2018.06.002.
  47. Canziani R, Spinosa L. Sludge from wastewater treatment plants. In: Prasad MNV, De Campos Favas PJ, Vithanage M, Mohan SV, editors. Industrial and municipal sludge emerging, concerns and scope for resource recovery. Oxford: Butterworth-Heinemann, Elsevier; 2019. p. 3–30.
  48. Spinosa L, Ayol A. Rheological characterization of sludge. In: Prasad MNV, De Campos Favas PJ, Vithanage M, Mohan SV, editors. Industrial and municipal sludge emerging, concerns and scope for resource recovery. 1st edn. Oxford: Butterworth-Heinemann, Elsevier; 2019. p. 225–52.
  49. Miryahyaei S, Olinga K, Ayub MS, Jayaratna SS, Othman M, Eshtiaghi N. Rheological measurements as indicators for hydrolysis rate, organic matter removal, and dewaterability of digestate in anaerobic digesters. J Environ Chem Eng. 2020;8(4):1–12. 10.1016/j.jece.2020.103970.
  50. Wei P, Tan Q, Uijttewaal W, van Lier JB, de Kreuk M. Experimental and mathematical characterisation of the rheological instability of concentrated waste activated sludge subject to anaerobic digestion. Chem Eng J. 2018;349:318–26. 10.1016/j.cej.2018.04.108.
  51. Ionescu CM, Birs IR, Copot D, Muresan CI, Caponetto R. Mathematical modelling with experimental validation of viscoelastic properties in non-Newtonian fluids. Phil Trans R Soc A. 2020;378(2172):1–21. 10.1098/rsta.2019.0284.
  52. Baroutian S, Eshtiaghi N, Gapes DJ. Rheology of a primary and secondary sewage sludge mixture: Dependency on temperature and solid concentration. Bioresour Technol. 2013;140:227–33. 10.1016/j.biortech.2013.04.114.
  53. Zhang J, Haward SJ, Wu Z, Dai X, Tao W, Li Z. Evolution of rheological characteristics of high-solid municipal sludge during anaerobic digestion. Appl Rheol. 2016;26(3):1–10. 10.3933/ApplRheol-26-32973.
  54. Tixier N, Guibaud G, Baudu M. Effect of pH and ionic environment changes on interparticle interactions affecting activated sludge flocs: A rheological approach. Environ Technol. 2003;24(8):971–78. 10.1080/09593330309385635.
  55. Manoliadis O, Bishop PL. Temperature effect on rheology of sludges. J Environ Eng. 1984;110(1):286–90. 10.1061/(ASCE)0733-9372(1984)110:1(286).
  56. Hong E, Yeneneh AM, Kayaalp A, Sen TK, Ang HM, Kayaalp M. Rheological characteristics of municipal thickened excess activated sludge (TEAS): impacts of pH, temperature, solid concentration and polymer dose. Res Chem Intermed. 2016;42(8):6567–85. 10.1007/s11164-016-2482-2.
  57. Gienau T, Kraume M, Rosenberger S. Rheological characterization of anaerobic sludge from agricultural and bio-waste biogas plants. Chem Ing Tech. 2018;90(7):988–97. 10.1002/cite.201700102.
  58. Wei P, Uijttewaal W, van Lier JB, de Kreuk M. Impacts of shearing and temperature on sewage sludge: Rheological characterisation and integration to flow assessment. Sci Total Environ. 2021;774:1–9. 10.1016/j.scitotenv.2021.145005.
  59. Yeneneh AM, Hong E, Sen TK, Kayaalp A, Ang HM. Effects of temperature, polymer dose, and solid concentration on the rheological characteristics and dewaterability of digested sludge of wastewater treatment plant (WWTP). Water Air Soil Pollut. 2016;227(4):1–14. 10.1007/s11270-016-2820-4.
  60. Pollice A, Giordano C, Laera G, Saturno D, Mininni G. Rheology of sludge in a complete retention membrane bioreactor. Environ Technol. 2006;27(7):723–32. 10.1080/09593332708618690.
  61. Han S, Yue Q, Yue M, Gao B, Li Q, Yu H, et al. The characteristics and application of sludge-fly ash ceramic particles (SFCP) as novel filter media. J Hazard Mater. 2009;171(1-3):809–14. 10.1016/j.jhazmat.2009.06.074.
  62. Mukherjee D, Kar S, Mandal A, Ghosh S, Majumdar S. Immobilization of tannery industrial sludge in ceramic membrane preparation and hydrophobic surface modification for application in atrazine remediation from water. J Eur Ceram Soc. 2019;39(10):3235–46. 10.1016/j.jeurceramsoc.2019.04.008.
  63. Abdullayev A, Bekheet MF, Hanaor DAH, Gurlo A. Materials and applications for low-cost ceramic membranes. Membranes. 2019;9(9):1–31. 10.3390/membranes9090105.
  64. Wang Z, Xu Z, Qiu D, Chu Y, Tang Y. Beneficial utilization of Al/Si/O-rich solid wastes for environment-oriented ceramic membranes. J Hazard Mater. 2021;401:1–10. 10.1016/j.jhazmat.2020.123427.
  65. Thommes M, Kaneko K, Neimark AV, Olivier JP, Reinoso FR, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9-10):1051–69. 10.1515/pac-2014-1117.
  66. Zhu X, Zhao L, Fu F, Yang Z, Li F, Yuan W, et al. Pyrolysis of pre-dried dewatered sewage sludge under different heating rates: Characteristics and kinetics study. Fuel. 2019;255:1–7. 10.1016/j.fuel.2019.05.174.
  67. Lin X, Mao T, Chen Z, Chen J, Zhang S, Li X, et al. Thermal cotreatment of municipal solid waste incineration fly ash with sewage sludge: Phases transformation, kinetics and fusion characteristics, and heavy metals solidification. J Clean Prod. 2021;317:1–11. 10.1016/j.jclepro.2021.128429.
  68. Karunadasa KSP, Manoratne CH, Pitawala HM, Rajapakse RM. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J Phys Chem Solids. 2019;134:21–8. 10.1016/j.jpcs.2019.05.023.
  69. Kosanović C, Stubičar N, Tomašić N, Bermanec V, Stubičar M. Synthesis of a forsterite powder by combined ball milling and thermal treatment. J Alloy Compd. 2005;389(1–2):306–9. 10.1016/j.jallcom.2004.08.015.
  70. Kang N, Schmidt MW, Poli S, Franzolin E, Connolly JAD. Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt. Chem Geol. 2015;400:34–43. 10.1016/j.chemgeo.2015.02.005.
  71. Majewsky M, Bitter H, Eiche E, Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ. 2016;568:507–11. 10.1016/j.scitotenv.2016.06.017.
  72. Rosario DS, Porcel JL, Martínez MP, Castelló DL, López AB. Study of microplastics with semicrystalline and amorphous structure identification by TGA and DSC. J Environ Chem Eng. 2022;10(1):106886. 10.1016/j.jece.2021.106886.
  73. Willems M, Pedersen B, Jørgensen SS. Composition and reactivity of ash from sewage sludge. Ambio. 1976;5(1):32–5.
  74. Nowak B, Aschenbrenner P, Winter F. Heavy metal removal from sewage sludge ash and municipal solid waste fly ash – A comparison. Fuel Process Technol. 2013;105:195–201. 10.1016/j.fuproc.2011.06.027.
  75. Wang L, Skjevrak G, Hustad JE, Grønli MG. Sintering characteristics of sewage sludge ashes at elevated temperatures. Fuel Process Technol. 2012;96:88–97. 10.1016/j.fuproc.2011.12.022.
  76. Bardestani R, Patience GS, Kaliaguine S. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-BET, BJH, and DFT. Can J Chem Eng. 2019;97(11):2781–91. 10.1002/cjce.23632.
  77. Rosales FJG, Hernández FJR, Sevilla A. An apparent viscosity function for shear thickening fluids. J Non-Newtonian Fluid Mech. 2011;166(5–6):321–5. 10.1016/j.jnnfm.2011.01.001.
  78. Edifor SY, Nguyen QD, van Eyk P, Biller P, Lewis DM. Rheological studies of municipal sewage sludge slurries for hydrothermal liquefaction biorefinery applications. Chem Eng Res Des. 2021;166:148–57. 10.1016/j.cherd.2020.12.004.
  79. Chauhan G, Verma A, Das A, Ojha K. Rheological studies and optimization of Herschel-Bulkley flow parameters of viscous karaya polymer suspensions using GA and PSO algorithms. Rheol Acta. 2018;57(3):267–85. 10.1007/s00397-017-1060-x.
  80. Del-Mazo-Barbara L, Ginebra MP. Rheological characterisation of ceramic inks for 3D direct ink writing: A review. J Eur Ceram Soc. 2021;41(16):18–33. 10.1016/j.jeurceramsoc.2021.08.031.
  81. Cheng Y, Li H. Rheological behavior of sewage sludge with high solid content. Water Sci Technol. 2015;71(11):1686–93. 10.2166/wst.2015.152.
  82. Holzgen M, Quirmbach P. Additives for extrusion. In: Händle F, editor. Extrusion in ceramics. Berlin Heidelberg: Springer-Verlag; 2007. p. 211–20.
  83. Ouallal H, Azrour M, Messaoudi M, Moussout H, Messaoudi L, Tijani N. Incorporation effect of olive pomace on the properties of tubular membranes. J Environ Chem Eng. 2020;8(2):2–9. 10.1016/j.jece.2020.103668.
  84. Tlacuatl GZ, González JP, Arellano JJC, Ramírez HB. Rheological characterization and extrusion of suspensions of natural zeolites. Appl Rheol. 2019;20(3):1–10. 10.3933/applrheol-20-34037.
  85. Ségalen C, Dieudé-Fauvel E, Clément J, Baudez JC. Relationship between electrical and rheological properties of sewage sludge – Impact of temperature. Water Res. 2015;73:1–8. 10.1016/j.watres.2015.01.004.
  86. Nie J, Li M, Liu W, Li W, Xing Z. The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing. J Eur Ceram Soc. 2021;41(1):646–54. 10.1016/j.jeurceramsoc.2020.08.013.
  87. Cao X, Tian Y, Jiang K, Qiu F, Fu K. Evaluation of thermal hydrolysis efficiency of sewage sludge via rheological measurement. J Environ Eng. 2020;146(12):1–12. 10.1061/(ASCE)EE.1943-7870.0001816.
  88. Liu GJ, Liu Y, Wang ZY, Lei YH, Chen ZA, Deng LW. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure. J Waste Manag. 2015;38:449–54. 10.1016/j.wasman.2014.12.015.
  89. Trávníček P, Junga P. Thixotropic behaviour of thickened sewage sludge. J Environ Health Sci Eng. 2014;12(1):1–6. 10.1186/2052-336X-12-72.
  90. Lopez J, Moreau A, Gil JA, van der Graaf JHJM, van Lier JB, Ratkovich N. MBR activated sludge viscosity measurement using the Delft filtration characterization method. J Water Process Eng. 2015;5:35–41. 10.1016/j.jwpe.2014.11.006.
  91. Hassanzadeh M, Tayebi L, Dezfouli H. Investigation of factors affecting on viscosity reduction of sludge from Iranian crude oil storage tanks. Pet Sci. 2018;15(1):634–43. 10.1007/s12182-018-0247-9.
  92. Ceacero CJC, Maroto JMM, Martínez MG, Rodríguez MU, López AB, García CM, et al. Effect of the addition of organic wastes (cork powder, nut shell, coffee grounds and paper sludge) in clays to obtain expanded lightweight aggregates. Bol Soc Esp Ceram Vidr. 2023;62(1):88–105. 10.1016/j.bsecv.2022.02.007.
  93. Liu M, Zhao Y, Yu Z. Effects of sewage sludge ash produced at different calcining temperatures on pore structure and durability of cement mortars. J Mater Cycles Waste Manag. 2021;23(2):755–63. 10.1007/s10163-021-01174-y.
  94. Bradford SA, Sasidharan S, Kim H, Flores AG, Li T, Shen C. Colloid interaction energies for surfaces with steric effects and incompressible and/or compressible roughness. Langmuir. 2021;37(4):1501–10. 10.1021/acs.langmuir.0c03029.
  95. Hotze EM, Phenrat T, Lowry GV. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual. 2010;39(6):1909–24. 10.2134/jeq2009.0462.
  96. Louie SM, Tilton RD, Lowry GV. Critical review: impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. Environ Sci Nano. 2016;3(2):283–10. 10.1039/C5EN00104H.
  97. Pal N, Kumar N, Mandal A. Stabilization of dispersed oil droplets in nanoemulsions by synergistic effects of the gemini surfactant, PHPA polymer, and silica nanoparticle. Langmuir. 2019;35(7):2655–67. 10.1021/acs.langmuir.8b03364.
  98. Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environ Sci Technol. 2010;44(17):6532–49. 10.1021/es100598h.
  99. Christian P, Von der Kammer F, Baalousha M, Hofmann T. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology. 2008;17(5):326–43. 10.1007/s10646-008-0213-1.
  100. Aiken GR, Hsu-Kim H, Ryan JN. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol. 2011;45(8):3196–201. 10.1021/es103992s.
  101. Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ. 2008;400(1–3):396–14. 10.1016/j.scitotenv.2008.06.042.
Language: English
Submitted on: Jul 31, 2024
Accepted on: Nov 8, 2024
Published on: Dec 16, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2024 Amar Bestani, Choukri Lekbir, Abdelbaki Benmounah, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.