Have a personal or library account? Click to login
Impact of calcination temperature, organic additive percentages, and testing temperature on the rheological behaviour of dried sewage sludge Cover

Impact of calcination temperature, organic additive percentages, and testing temperature on the rheological behaviour of dried sewage sludge

Open Access
|Dec 2024

Figures & Tables

Figure 1

ATG-DSC of SS0.
ATG-DSC of SS0.

Figure 2

XRD diffractograms of SS0 and SSAs (SSA600, SSA700, SSA750, SSA800, SSA850, SSA900, SSA950, and SSA1000).
XRD diffractograms of SS0 and SSAs (SSA600, SSA700, SSA750, SSA800, SSA850, SSA900, SSA950, and SSA1000).

Figure 3

(a) Nitrogen adsorption–desorption isotherms and (b) BET specific surface area and average pore diameter of SS0 and SSAs (SSA600, SSA700, SSA750, SSA800, SSA850, SSA900, and SSA950).
(a) Nitrogen adsorption–desorption isotherms and (b) BET specific surface area and average pore diameter of SS0 and SSAs (SSA600, SSA700, SSA750, SSA800, SSA850, SSA900, and SSA950).

Figure 4

SEM images of SS0 and SSAs (SSA600, SSA700, SSA750, SSA800, SSA850, SSA900, SSA950, and SSA1000).
SEM images of SS0 and SSAs (SSA600, SSA700, SSA750, SSA800, SSA850, SSA900, SSA950, and SSA1000).

Figure 5

(a) Shear stress (τ)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) and (b) apparent viscosity (η)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) curves of SS0 for TS = 4%, at 20°C.
(a) Shear stress (τ)−shear rate ( γ ̇ \dot{\gamma } ) and (b) apparent viscosity (η)−shear rate ( γ ̇ \dot{\gamma } ) curves of SS0 for TS = 4%, at 20°C.

Figure 6

Shear stress (τ)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) curves of SS0 and SSAs for different TS = 4, 7, 10, 13, and 15%, at 20°C.
Shear stress (τ)−shear rate ( γ ̇ \dot{\gamma } ) curves of SS0 and SSAs for different TS = 4, 7, 10, 13, and 15%, at 20°C.

Figure 7

Apparent viscosity (η)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) curves of SS0 and SSAs, for different TS = 4, 7, 10, 13, and 15%, at 20°C.
Apparent viscosity (η)−shear rate ( γ ̇ \dot{\gamma } ) curves of SS0 and SSAs, for different TS = 4, 7, 10, 13, and 15%, at 20°C.

Figure 8

Shear stress (τ)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) curves of SSAs, mixed with organic additives (4% methocel + 4% amijel + 8% starch), for different TS = 4, 7, 10, 13, and 15%, at 20°C.
Shear stress (τ)−shear rate ( γ ̇ \dot{\gamma } ) curves of SSAs, mixed with organic additives (4% methocel + 4% amijel + 8% starch), for different TS = 4, 7, 10, 13, and 15%, at 20°C.

Figure 9

Apparent viscosity (η)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) curves of SSA, mixed with organic additives (4% methocel + 4% amijel + 8% starch), for different TS = 4, 7, 10, 13, and 15%, at 20°C.
Apparent viscosity (η)−shear rate ( γ ̇ \dot{\gamma } ) curves of SSA, mixed with organic additives (4% methocel + 4% amijel + 8% starch), for different TS = 4, 7, 10, 13, and 15%, at 20°C.

Figure 10

Shear stress (τ)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) curves of sewage sludge ash SSA850, mixed with organic additives (4% amijel + 8% starch) and various percentages of methocel: 3, 4, 5, and 6%, for different TS, at 20°C.
Shear stress (τ)−shear rate ( γ ̇ \dot{\gamma } ) curves of sewage sludge ash SSA850, mixed with organic additives (4% amijel + 8% starch) and various percentages of methocel: 3, 4, 5, and 6%, for different TS, at 20°C.

Figure 11

Apparent viscosity (η)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) curves of sewage sludge ash SSA850, mixed with organic additives (4% amijel + 8% starch) and various percentages of methocel: 3, 4, 5, and 6%, for different TS, at 20°C.
Apparent viscosity (η)−shear rate ( γ ̇ \dot{\gamma } ) curves of sewage sludge ash SSA850, mixed with organic additives (4% amijel + 8% starch) and various percentages of methocel: 3, 4, 5, and 6%, for different TS, at 20°C.

Figure 12

Shear stress (τ)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) curves of sludge systems (SS0, SSA850, SSA850 + 4% methocel + 4% amijel + 8% starch, and SSA850 + 5% methocel + 4% amijel + 8% starch) for a TS = 10%, at different testing temperatures (20, 30, 40, 50, and 60°C).
Shear stress (τ)−shear rate ( γ ̇ \dot{\gamma } ) curves of sludge systems (SS0, SSA850, SSA850 + 4% methocel + 4% amijel + 8% starch, and SSA850 + 5% methocel + 4% amijel + 8% starch) for a TS = 10%, at different testing temperatures (20, 30, 40, 50, and 60°C).

Figure 13

Apparent viscosity (η)−shear rate (
                           
                              
                              
                                 
                                    γ
                                    ̇
                                 
                              
                              \dot{\gamma }
                           
                        ) curves of sludge systems (SS0, SSA850, SSA850 + 4% methocel + 4% amijel + 8% starch, and SSA850 + 5% methocel + 4% amijel + 8% starch) for a TS = 10%, at different testing temperatures (20, 30, 40, 50, and 60°C).
Apparent viscosity (η)−shear rate ( γ ̇ \dot{\gamma } ) curves of sludge systems (SS0, SSA850, SSA850 + 4% methocel + 4% amijel + 8% starch, and SSA850 + 5% methocel + 4% amijel + 8% starch) for a TS = 10%, at different testing temperatures (20, 30, 40, 50, and 60°C).

Figure 14

Arrhenius plots of ln(η) versus 1/T for sludge systems (SS0, SSA850, SSA850 mixed with 4% methocel + 4% amijel + 8% starch, and SSA850 mixed with 5% methocel + 4% amijel + 8% starch), at TS = 10%.
Arrhenius plots of ln(η) versus 1/T for sludge systems (SS0, SSA850, SSA850 mixed with 4% methocel + 4% amijel + 8% starch, and SSA850 mixed with 5% methocel + 4% amijel + 8% starch), at TS = 10%.

Fitting parameters of different viscosity rheological models for different TS of SS0 and SSAs at 20°C

SludgeTS (%)Cross modelCarreau model
η = η + ( η 0 η ) 1 + ( λ γ ̇ ) m \eta ={\eta }_{\infty }+\frac{({\eta }_{0}‒{\eta }_{\infty })}{1+{(\lambda \dot{\gamma })}^{m}} η = η + ( η 0 η ) ( 1 + ( λ γ ̇ ) 2 ) n 1 2 \eta ={\eta }_{\infty }+\left[({\eta }_{0}‒{\eta }_{\infty }){(1+{(\lambda \dot{\gamma })}^{2})}^{\frac{n‒1}{2}}\hspace{.25em}\right]
η {\eta }_{\infty } (Pa s) η 0 {\eta }_{0} (Pa s) λ \lambda (s) m R 2 η {\eta }_{\infty } (Pa s) η 0 {\eta }_{0} (Pa s) λ \lambda (s) n R 2
SS041.967 × 10−3 1.4511.641.151.00001.547 × 10−3 1.1816.017.00 × 10−4 0.9906
72.268 × 10−3 1.0514.711.000.99642.288 × 10−3 0.6910.106.84 × 10−4 0.9947
102.280 × 10−3 0.5913.160.950.99852.336 × 10−3 0.050.717.59 × 10−4 0.9920
132.760 × 10−3 0.9211.341.011.00002.760 × 10−3 0.232.937.46 × 10−4 0.9971
153.310 × 10−3 0.213.050.971.00003.372 × 10−3 0.060.787.87 × 10−4 0.9976
SSA80041.208 × 10−3 0.5410.850.991.00001.245 × 10−3 0.101.957.49 × 10−4 0.9986
71.444 × 10−3 0.6611.491.030.99891.388 × 10−3 0.203.875.93 × 10−4 0.9938
101.587 × 10−3 0.509.260.981.00001.552 × 10−3 0.050.797.55 × 10−4 0.9956
131.982 × 10−3 0.131.980.921.00002.203 × 10−3 0.040.549.40 × 10−4 0.9985
152.264 × 10−3 0.182.080.901.00002.542 × 10−3 0.070.727.56 × 10−4 0.9969
SSA85041.167 × 10−3 0.163.490.961.00001.062 × 10−3 0.051.101.15 × 10−4 0.9897
71.242 × 10−3 0.437.511.031.00001.241 × 10−3 0.132.475.89 × 10−4 0.9979
101.267 × 10−3 0.416.201.000.99901.237 × 10−3 0.060.857.56 × 10−4 0.9881
131.695 × 10−3 0.202.950.971.00001.566 × 10−3 0.050.698.01 × 10−4 0.9941
152.128 × 10−3 0.111.490.901.00001.830 × 10−3 0.060.787.29 × 10−4 0.9918
SSA90041.164 × 10−3 0.233.981.041.00001.250 × 10−3 0.101.907.45 × 10−4 0.9974
71.237 × 10−3 0.294.631.051.00001.202 × 10−3 0.244.757.04 × 10−4 0.9984
101.268 × 10−3 0.316.100.950.99941.394 × 10−3 0.050.877.47 × 10−4 0.9939
131.332 × 10−3 0.253.990.961.00001.418 × 10−3 0.060.868.06 × 10−4 0.9978
151.854 × 10−3 0.121.540.900.99922.480 × 10−3 0.060.761.07 × 10−3 0.9936
SSA95041.162 × 10−3 0.243.901.031.00001.193 × 10−3 0.101.769.99 × 10−4 0.9941
71.233 × 10−3 0.264.261.040.99951.208 × 10−3 0.244.699.76 × 10−4 0.9246
101.248 × 10−3 0.173.960.930.99931.261 × 10−3 0.040.701.00 × 10−3 0.9973
131.355 × 10−3 0.173.010.911.00001.608 × 10−3 0.050.691.00 × 10−3 0.9961
151.361 × 10−3 0.131.651.040.99971.291 × 10−3 0.050.741.00 × 10−3 0.9986

Fitting parameters of different shear stress rheological models for different TS of SSA850, mixed with organic additives (4% amijel + 8% starch) and various percentages of methocel: 3, 4, 5, and 6%, at 20°C

SludgeTS (%)Herschel–Bulkley modelOstwald–de Waele modelThixotropy
τ = τ 0 + K γ n \tau ={\tau }_{0}+K{\gamma }^{n} τ = K γ n \tau =K{\gamma }^{n}
τ 0 (Pa) K (Pa s) n R 2 K (Pa s) n R 2 rHa (Pa s−1)
SSA850 + 3% methocel + 4% amijel + 8% starch 40.11177.97 × 10−6 1.96830.99933.97 × 10−5 1.72110.9949NT
70.32056.56 × 10−6 2.02150.99563.06 × 10−4 1.42940.9728NT
100.24651.42 × 10−4 1.62430.99905.79 × 10−4 1.40910.9950NT
130.52635.27 × 10−4 1.49410.99912.69 × 10−3 1.24600.9932NT
150.72691.54 × 10−3 1.39710.99935.78 × 10−3 1.19680.9951NT
SSA850 + 4% methocel + 4% amijel + 8% starch40.14239.44 × 10−4 1.24450.99662.54 × 10−3 1.09530.994141.14
70.23244.64 × 10−3 1.07860.99971.02 × 10−2 0.96130.997869.48
100.07383.54 × 10−2 0.88980.99993.88 × 10−2 0.87640.9999175.48
13−0.30841.64 × 10−1 0.77350.99991.41 × 10−1 0.79520.9998241.47
15−0.34871.73 × 10−1 0.76590.99991.47 × 10−1 0.79000.9998NT
SSA850 + 5% methocel + 4% amijel + 8% starch 40.16182.10 × 10−3 1.12850.99905.31 × 10−3 0.98970.9966NT
70.10351.47 × 10−2 0.97791.00001.79 × 10−2 0.94910.9998NT
10−0.21358.02 × 10−2 0.82970.99986.83 × 10−2 0.85310.9997NT
13−0.55152.97 × 10−1 0.75520.99992.53 × 10−1 0.77860.9998NT
15−0.90606.48 × 10−1 0.71630.99975.60 × 10−1 0.73740.9996NT
SSA850 + 6% methocel + 4% amijel + 8% starch40.12082.15 × 10−3 1.13600.99934.42 × 10−3 1.02840.9979NT
70.12261.78 × 10−2 0.95390.99992.21 × 10−2 0.92200.9997NT
10−0.07021.20 × 10−1 0.81060.99991.05 × 10−1 0.83040.9999NT
13−0.22558.35 × 10−1 0.69000.99936.70 × 10−1 0.72150.9991NT
15−0.77818.19 × 10−1 0.70390.99858.26 × 10−1 0.70250.9985NT

Chemical composition and weight LOI of SS0 and SSAs

Compounds (wt%)Dried sludge and sludge ashes
SS0SSA600SSA700SSA750SSA800SSA850SSA900SSA950
Na2O 0.2500.3800.3600.3900.3800.4200.4000.410
MgO 1.6402.9102.9603.0203.0103.0303.0503.080
Al2O3 6.42011.77012.08012.16012.17012.18012.20012.260
SiO2 15.52030.70033.12032.55032.58032.83033.14032.890
P2O5 5.2709.3909.87010.05010.07010.15010.22010.220
SO3 3.3004.7304.6804.7705.0005.1405.1505.170
K2O 0.9501.8301.8901.8301.8401.8601.7901.770
CaO 11.55021.99022.89022.92022.94023.49024.14024.380
TiO2 0.3300.6800.6900.7000.7000.7000.7000.720
MnO0.1500.2900.2900.3000.3200.3200.3200.320
Fe2O3 2.5805.5205.6605.6805.7005.9206.0206.030
Cr2O3 0.0070.0100.0100.0200.0200.0200.0200.020
NiO0.0050.0090.0100.0100.0090.0100.0100.010
CuO0.0200.0400.0400.0000.0000.0400.0400.040
ZnO0.0600.1400.1500.1500.1600.1600.1700.170
SrO0.0200.0400.0500.0500.0600.0700.0700.070
Rb2O0.0020.0050.0050.0050.0060.0060.0070.006
PbO0.0040.0100.0100.0100.0200.0200.0200.020
BaO0.0400.0900.1000.1000.1000.1000.1000.110
ZrO2 0.0020.0050.0060.0060.0080.0090.0100.010
Cl0.1000.1000.1200.1100.1000.0900.0600.050
LOI52.01010.0605.0205.5605.7603.8803.1102.540

Fitting parameters of different shear stress rheological models for different TS of SS0 and SSAs at 20°C

SludgeTS (%)Herschel–Bulkley modelOstwald–de Waele model
τ = τ 0 + K γ n \tau ={\tau }_{0}+K{\gamma }^{n} τ = K γ n \tau =K{\gamma }^{n}
τ 0 (Pa) K (Pa s) n R 2 K (Pa s) n R 2
SS040.11236.43 × 10−5 1.60820.99922.93 × 10−4 1.37650.9944
70.15845.20 × 10−5 1.65580.99813.82 × 10−4 1.35100.9900
100.16282.15 × 10−5 1.81610.99761.61 × 10−4 1.50760.9900
130.22821.62 × 10−5 1.87360.99552.39 × 10−4 1.45940.9834
150.24137.17 × 10−5 1.65550.99587.39 × 10−4 1.28720.9854
SSA80040.06406.65 × 10−5 1.59520.99921.67 × 10−4 1.45510.9973
70.06995.73 × 10−5 1.63020.99931.49 × 10−4 1.48440.9973
100.08465.81 × 10−5 1.63440.99891.75 × 10−4 1.46650.9962
130.15454.82 × 10−5 1.67640.99863.15 × 10−4 1.38960.9915
150.20135.36 × 10−5 1.66340.99805.45 × 10−4 1.30860.9872
SSA85040.06706.46 × 10−5 1.59740.99911.71 × 10−4 1.44890.9970
70.06455.99 × 10−5 1.61690.99911.49 × 10−4 1.47810.9973
100.06985.63 × 10−5 1.63590.99921.44 × 10−4 1.49260.9972
130.11355.37 × 10−5 1.65320.99923.15 × 10−4 1.43520.9948
150.18554.47 × 10−5 1.69480.99843.92 × 10−4 1.36220.9890
SSA90040.06157.46 × 10−5 1.57550.99901.80 × 10−4 1.44170.9973
70.06654.77 × 10−5 1.65480.99941.24 × 10−4 1.50920.9975
100.07685.10 × 10−5 1.65070.99901.58 × 10−4 1.47880.9967
130.09414.03 × 10−5 1.70120.99921.36 × 10−4 1.51530.9960
150.17295.53 × 10−5 1.65540.99834.25 × 10−4 1.34380.9898
SSA95040.06406.91 × 10−5 1.58600.99924.84 × 10−3 1.44410.9973
70.06295.34 × 10−5 1.63640.99921.30 × 10−4 1.50010.9975
100.06573.98 × 10−5 1.69620.99919.70 × 10−5 1.55990.9974
130.10123.90 × 10−5 1.70700.99881.43 × 10−4 1.50860.9952
150.10975.22 × 10−5 1.65210.99911.49 × 10−4 1.49190.9967

Fitting parameters of different viscosity rheological models for different TS of SSA, mixed with organic additives (4% methocel + 4% amijel + 8% starch), at 20°C

SludgeTS (%)Cross modelCarreau model
η = η + ( η 0 η ) 1 + ( λ γ ̇ ) m \eta ={\eta }_{\infty }+\frac{({\eta }_{0}‒{\eta }_{\infty })}{1+{(\lambda \dot{\gamma })}^{m}} η = η + ( η 0 η ) ( 1 + ( λ γ ̇ ) 2 ) n 1 2 \eta ={\eta }_{\infty }+\left[({\eta }_{0}‒{\eta }_{\infty }){(1+{(\lambda \dot{\gamma })}^{2})}^{\frac{n‒1}{2}}\hspace{.25em}\right]
η {\eta }_{\infty } (Pa s) η 0 {\eta }_{0} (Pa s) λ \lambda (s) M R 2 η {\eta }_{\infty } (Pa s) η 0 {\eta }_{0} (Pa s) λ \lambda (s) n R 2
SSA800 + 4% methocel + 4% amijel + 8% starch43.810 × 10−3 0.8512.261.000.99793.817 × 10−3 0.162.311.79 × 10−4 0.9968
78.071 × 10−3 0.8614.640.841.00008.517 × 10−3 0.090.621.80 × 10−4 0.9939
101.926 × 10−2 0.556.380.800.99601.891 × 10−2 0.7012.892.59 × 10−1 0.9978
135.496 × 10−2 0.652.610.791.00005.317 × 10−2 0.422.193.10 × 10−1 0.9987
157.422 × 10−2 0.813.710.670.99948.580 × 10−2 0.240.311.80 × 10−4 0.9963
SSA850 + 4% methocel + 4% amijel + 8% starch44.300 × 10−3 1.096.891.270.98303.981 × 10−3 1.0214.382.89 × 10−4 0.9289
77.752 × 10−3 3.358.901.150.99556.991 × 10−3 1.677.136.72 × 10−5 0.9687
101.854 × 10−2 1.667.900.961.00001.862 × 10−2 1.225.381.53 × 10−4 0.9993
134.781 × 10−2 0.754.330.771.00004.644 × 10−2 0.422.823.13 × 10−1 0.9996
155.021 × 10−2 0.823.850.830.99964.868 × 10−2 0.553.292.55 × 10−1 0.9983
SSA900 + 4% methocel + 4% amijel + 8% starch44.583 × 10−3 1.2717.481.001.00004.587 × 10−3 0.233.221.01 × 10−4 0.9969
79.014 × 10−3 0.254.630.830.99478.943 × 10−3 0.101.772.13 × 10−1 1.0000
102.785 × 10−2 0.5915.980.650.99712.743 × 10−2 0.213.763.94 × 10−1 0.9994
135.656 × 10−2 0.7824.110.450.99825.279 × 10−2 0.303.926.13 × 10−1 0.9973
158.044 × 10−2 0.563.130.561.00007.369 × 10−2 0.301.685.63 × 10−1 0.9985
SSA950 + 4% methocel + 4% amijel + 8% starch44.731 × 10−3 0.9916.600.991.00004.699 × 10−3 0.9618.223.79 × 10−2 0.9961
79.989 × 10−3 0.305.340.850.99629.926 × 10−3 0.152.781.91 × 10−1 0.9991
102.770 × 10−2 0.506.800.720.99832.831 × 10−2 0.120.632.34 × 10−1 0.9984
135.708 × 10−2 0.516.680.351.00003.861 × 10−2 0.316.917.69 × 10−1 0.9988
151.108 × 10−1 0.340.150.600.99656.329 × 10−2 0.300.677.64 × 10−1 0.9953

Fitting parameters of different viscosity rheological models for a TS = 10% of SS0, SSA850, SSA850 + 4% methocel + 4% amijel + 8% starch, and SSA850 + 5% methocel + 4% amijel + 8% starch at different testing temperatures (20, 30, 40, 50, and 60°C)

Sludge T (°C)Cross modelCarreau model
η = η + ( η 0 η ) 1 + ( λ γ ̇ ) m \eta ={\eta }_{\infty }+\frac{({\eta }_{0}‒{\eta }_{\infty })}{1+{(\lambda \dot{\gamma })}^{m}} η = η + ( η 0 η ) ( 1 + ( λ γ ̇ ) 2 ) n 1 2 \eta ={\eta }_{\infty }+\left[({\eta }_{0}‒{\eta }_{\infty }){(1+{(\lambda \dot{\gamma })}^{2})}^{\frac{n‒1}{2}}\hspace{.25em}\right]
η {\eta }_{\infty } (Pa s) η 0 {\eta }_{0} (Pa s) λ \lambda (s) m R 2 η {\eta }_{\infty } (Pa s) η 0 {\eta }_{0} (Pa s) λ \lambda (s) n R 2
SS0202.28 × 10−3 0.5913.160.950.99852.336 × 10−3 0.050.717.59 × 10−4 0.9920
301.556 × 10−3 0.435.331.030.99871.510 × 10−3 0.395.686.91 × 10−4 0.9982
401.258 × 10−3 0.203.570.971.00001.353 × 10−3 0.060.951.00 × 10−3 0.9988
501.006 × 10−3 0.091.431.031.00001.010 × 10−3 0.040.737.47 × 10−4 0.9980
601.017 × 10−3 0.101.511.070.99827.905 × 10−4 0.061.071.79 × 10−4 0.9989
SSA850201.267 × 10−3 0.416.201.000.99901.237 × 10−3 0.060.857.56 × 10−4 0.9881
301.175 × 10−3 0.091.381.070.99941.105 × 10−3 0.050.877.53 × 10−4 0.9969
401.126 × 10−3 0.152.011.111.00009.833 × 10−4 0.234.526.65 × 10−4 0.9979
501.030 × 10−3 0.263.781.091.00008.731 × 10−4 0.469.004.63 × 10−4 0.9927
609.888 × 10−4 0.141.871.130.99877.800 × 10−4 0.315.911.77 × 10−4 0.9973
SSA850 + 4% methocel + 4% amijel + 8% starch201.854 × 10−2 1.667.900.961.00001.862 × 10−2 1.225.381.53 × 10−4 0.9993
301.230 × 10−2 0.252.250.781.00001.208 × 10−2 0.111.012.80 × 10−1 0.9997
409.526 × 10−3 0.161.860.860.99679.319 × 10−3 0.183.962.47 × 10−1 0.9961
507.444 × 10−3 0.080.551.160.99337.328 × 10−3 0.060.617.49 × 10−4 0.9923
605.679 × 10−3 0.050.381.440.97825.494 × 10−3 0.366.301.74 × 10−4 0.9592
SSA850 + 5% methocel + 4% amijel + 8% starch202.762 × 10−2 0.7928.880.620.99743.043 × 10−2 0.090.295.00 × 10−4 0.9701
302.092 × 10−2 0.262.330.751.00002.019 × 10−2 0.131.193.44 × 10−1 1.0028
401.357 × 10−2 0.287.170.670.99991.334 × 10−2 0.227.683.90 × 10−1 0.9963
501.048 × 10−2 0.203.120.830.99501.043 × 10−2 0.081.042.12 × 10−1 0.9930
608.577 × 10−3 0.060.351.370.97668.378 × 10−3 0.070.821.79 × 10−4 0.9700

Fitting parameters of different shear stress rheological models for different TS of SSAs mixed with organic additives (4% methocel + 4% amijel + 8% starch) at 20°C

SludgeTS (%)Herschel–Bulkley modelOstwald–de Waele modelThixotropy
τ = τ 0 + K γ n \tau ={\tau }_{0}+K{\gamma }^{n} τ = K γ n \tau =K{\gamma }^{n}
τ 0 (Pa) K (Pa s) n R 2 K (Pa s) n R 2 rHa (Pa s−1)
SSA800 + 4% methocel + 4% amijel + 8% starch40.23061.96 × 10−4 1.48640.99131.50 × 10−3 1.18130.983418.87
70.18446.21 × 10−3 1.04900.99981.08 × 10−2 0.96650.998982.19
10−0.05004.39 × 10−2 0.86340.99984.15 × 10−2 0.87180.9998242.35
13−0.74372.50 × 10−1 0.72750.99961.85 × 10−1 0.77070.9993525.66
15−0.73223.12 × 10−1 0.74320.99992.51 × 10−1 0.77460.9997NT
SSA850 + 4% methocel + 4% amijel + 8% starch40.14239.44 × 10−4 1.24450.99662.54 × 10−3 1.09530.994141.14
70.23244.64 × 10−3 1.07860.99971.02 × 10−2 0.96130.997869.48
100.07383.54 × 10−2 0.88980.99993.88 × 10−2 0.87640.9999175.48
13−0.30841.64 × 10−1 0.77350.99991.41 × 10−1 0.79520.9998241.47
15−0.34871.73 × 10−1 0.76590.99991.47 × 10−1 0.79000.9998NT
SSA900 + 4% methocel + 4% amijel + 8% starch40.13722.29 × 10−3 1.10970.99875.10 × 10−3 0.98910.996858.18
70.14167.57 × 10−3 1.03290.99991.11 × 10−2 0.97560.999458.77
10−0.24198.86 × 10−2 0.80360.99987.35 × 10−2 0.83100.9997268.27
13−0.48112.66 × 10−1 0.74520.99982.26 × 10−1 0.76900.9997233.02
15−0.78383.96 × 10−1 0.70820.99993.19 × 10−1 0.73940.9997NT
SSA950 + 4% methocel + 4% amijel + 8% starch40.12302.42 × 10−3 1.10840.99934.80 × 10−3 1.00480.997956.79
70.13018.77 × 10−3 1.02460.99991.21 × 10−2 0.97700.999658.35
10−0.20688.23 × 10−2 0.81490.99986.99 × 10−2 0.83870.9997219.88
13−1.49485.41 × 10−1 0.66440.99973.70 × 10−1 0.71850.9991NT
15−1.44626.94 × 10−1 0.68360.99975.36 × 10−1 0.72050.9995NT

Fitting parameters of different shear stress rheological models for a TS = 10% of SS0, SSA850, SSA850 mixed with 4% methocel + 4% amijel + 8% starch, and SSA850 mixed with 5% methocel + 4% amijel + 8% starch, at different testing temperatures (20, 30, 40, 50, and 60°C)

Sludge system T (°C)Herschel–Bulkley modelOstwald–de Waele modelThixotropy
τ = τ 0 + K γ n \tau ={\tau }_{0}+K{\gamma }^{n} τ = K γ n \tau =K{\gamma }^{n}
τ 0 (Pa) K (Pa s) n R 2 K (Pa s) n R 2 rHa (Pa s−1)
SS0200.16282.15 × 10−5 1.81610.99761.61 × 10−4 1.50760.9900NT
300.11281.63 × 10−5 1.85720.99947.16 × 10−5 1.62960.9953NT
400.08462.03 × 10−5 1.82430.99926.01 × 10−5 1.65810.9969NT
500.08361.29 × 10−5 1.86770.99944.85 × 10−5 1.66380.9962NT
600.06612.64 × 10−5 1.74870.99937.23 × 10−5 1.59450.9972NT
SSA850200.06985.63 × 10−5 1.63590.99921.44 × 10−4 1.49260.9972NT
300.06093.92 × 10−5 1.68610.99939.55 × 10−5 1.55010.9976NT
400.03971.04 × 10−4 1.52040.99861.81 × 10−4 1.43540.9979NT
500.02751.96 × 10−4 1.39890.99732.93 × 10−4 1.33830.9969NT
600.04091.75 × 10−4 1.38980.99863.52 × 10−4 1.28380.9973NT
SSA850 + 4% methocel + 4% amijel + 8% starch200.07383.54 × 10−2 0.88980.99993.88 × 10−2 0.87640.9999175.48
300.20211.60 × 10−2 0.96440.99982.31 × 10−2 0.90950.9994111.92
400.20056.94 × 10−3 1.05330.99961.18 × 10−2 0.97430.998859.04
500.15983.74 × 10−3 1.11010.99971.57 × 10−4 0.00390.9987NT
600.13981.31 × 10−3 1.23870.99972.72 × 10−3 1.12930.9983NT
SSA850 + 5% methocel + 4% amijel + 8% starch20−0.21358.02 × 10−2 0.82970.99986.83 × 10−2 0.85310.9997NT
300.09624.32 × 10−2 0.87111.00004.81 × 10−2 0.85540.9999NT
400.19291.61 × 10−2 0.98130.99982.23 × 10−2 0.93330.9995NT
500.18758.13 × 10−3 1.04350.99981.27 × 10−2 0.97670.9991NT
600.21022.52 × 10−3 1.19670.99955.15 × 10−3 1.08930.9981NT

Fitting parameters of different viscosity rheological models for different TS of SSA850, mixed with organic additives (4% amijel + 8% starch) and various percentages of methocel: 3, 4, 5, and 6%, at 20°C

SludgeTS (%)Cross modelCarreau model
η = η + ( η 0 η ) 1 + ( λ γ ̇ ) m \eta ={\eta }_{\infty }+\frac{({\eta }_{0}‒{\eta }_{\infty })}{1+{(\lambda \dot{\gamma })}^{m}} η = η + ( η 0 η ) ( 1 + ( λ γ ̇ ) 2 ) n 1 2 \eta ={\eta }_{\infty }+\left[({\eta }_{0}‒{\eta }_{\infty }){(1+{(\lambda \dot{\gamma })}^{2})}^{\frac{n‒1}{2}}\hspace{.25em}\right]
η {\eta }_{\infty } (Pa s) η 0 {\eta }_{0} (Pa s) λ \lambda (s) m R 2 η {\eta }_{\infty } (Pa s) η 0 {\eta }_{0} (Pa s) λ \lambda (s) n R 2
SSA850 + 3% methocel + 4% amijel + 8% starch41.246 × 10−3 0.060.431.240.99928.456 × 10−4 0.050.567.58 × 10−4 0.9987
72.807 × 10−3 0.120.451.160.99782.461 × 10−3 0.090.497.48 × 10−4 0.9976
104.982 × 10−3 0.060.221.550.99774.184 × 10−3 0.060.447.60 × 10−4 0.9910
138.075 × 10−3 0.200.591.000.99988.489 × 10−3 0.120.407.59 × 10−4 0.9982
151.126 × 10−2 0.491.350.871.00001.359 × 10−2 0.210.467.60 × 10−4 0.9986
SSA850 + 4% methocel + 4% amijel + 8% starch44.300 × 10−3 1.096.891.270.98303.981 × 10−3 1.0214.382.89 × 10−4 0.9289
77.752 × 10−3 3.358.901.150.99556.991 × 10−3 1.677.136.72 × 10−5 0.9687
101.854 × 10−2 1.667.900.961.00001.862 × 10−2 1.225.381.53 × 10−4 0.9993
134.781 × 10−2 0.754.330.771.00004.644 × 10−2 0.422.823.13 × 10−1 0.9996
155.021 × 10−2 0.823.850.830.99964.868 × 10−2 0.553.292.55 × 10−1 0.9983
SSA850 + 5% methocel + 4% amijel + 8% starch44.855 × 10−3 0.979.131.060.99214.746 × 10−3 3.0937.334.51 × 10−4 0.9909
71.260 × 10−2 1.1529.540.810.99851.306 × 10−2 0.080.651.50 × 10−4 0.9894
102.762 × 10−2 0.7928.880.620.99743.043 × 10−2 0.090.295.00 × 10−4 0.9701
137.697 × 10−2 0.421.320.651.00006.880 × 10−2 0.6413.865.48 × 10−1 0.9983
151.231 × 10−1 0.711.390.490.99951.732 × 10−1 0.360.211.01 × 10−4 0.9817
SSA850 + 6% methocel + 4% amijel + 8% starch44.993 × 10−3 0.478.620.980.99445.025 × 10−3 0.081.367.45 × 10−4 0.9923
71.284 × 10−2 0.8642.800.691.00001.278 × 10−2 0.205.283.29 × 10−1 0.9979
103.261 × 10−2 0.6344.980.450.99683.190 × 10−2 0.193.675.89 × 10−1 0.9916
131.637 × 10−1 0.683.480.460.99911.466 × 10−1 0.422.206.86 × 10−1 0.9988
152.536 × 10−1 1.820.262.990.99371.771 × 10−1 2.750.804.43 × 10−4 0.9915

Initial value of dynamic viscosity (η 0) and activation energy calculated from Arrhenius plots of sludge systems (SS0, SSA850, SSA850 + 4% methocel + 4% amijel + 8% starch, and SSA850 + 5% methocel + 4% amijel + 8% starch) at TS = 10%

SamplesTS (%)(η 0) (Pa s) E a (kJ mol−1) R 2
SS0104.29 × 10−7 20.800.9916
SSA850101.56 × 10−4 5.100.9885
SSA850 + meth4%+ ami4%+ star8%101.23 × 10−6 23.350.9939
SSA850 + meth5%+ ami4%+ star8%101.11 × 10−6 24.670.9890
Language: English
Submitted on: Jul 31, 2024
Accepted on: Nov 8, 2024
Published on: Dec 16, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2024 Amar Bestani, Choukri Lekbir, Abdelbaki Benmounah, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.