References
- Mkhize N, Bhaskaran H. Electrohydrodynamic jet printing: Introductory concepts and considerations. Small Sci. 2021;2:2100073.
- Haider S, Haider A, Alghyamah AA, Khan R, Almasry WA, Khan N. Electrohydrodynamic processes and their affecting parameters. Electrospinning and electrospraying – techniques and applications. London, Uinted Kingdom: IntechOpen; 2019. 10.5772/intechopen.77414.
- Williams GR, Raimi-Abraham BT, Luo CJ. 2 Electrospinning fundamentals. Nanofibres in drug delivery. London: UCLPRESS; 2018.
- Yin Z, Huang Y, Duan Y, Zhang H. Electrohydrodynamic direct-writing for flexible electronic manufacturing. Singapore: Springer Nature; 2018.
- Singh SK, Subramanian A. Phase-field simulations of electrohydrodynamic jetting for printing nano-to-microscopic constructs. RSC Adv. 2020;10(42):25022–8.
- Kuznetsov NM, Kovaleva VV, Belousov SI, Chvalun SN. Electrorheological fluids: from historical retrospective to recent trends. Mater Today Chem. 2022;26:101066.
- Hao T. Chapter 10 - Applications of electrorheological fluids. Electrorheological fluids: The non-aqueous suspensions. Vol. 22. Elsevier; 2005. p. 518–51.
- Liang Y, Huang D, Zhou X, Wang Z, Shi Q, Hong Y, et al. Efficient electrorheological technology for materials, energy, and mechanical engineering: from mechanisms to applications. Engineering. 2022;24:151–71.
- Hao T. Chapter 5 - Critical parameters to the electrorheological effect. Electrorheological fluids: The non-aqueous suspensions. Vol. 22, Elsevier; 2005. p. 152–234.
- Do T, Lee H, Ko YG, Chun Y, Choi US, Kim CH. Influence of amine- and sulfonate-functional groups on electrorheological behavior of polyacrylonitrile dispersed suspension. Colloids Surf A: Physicochem Eng Asp. 2017;514:56–62.
- Hirose Y, Otsubo Y. Electrorheology of poly(Ethylene Glycol) suspension. AIP Conf Proc. 2008;1027(1):797–9.
- Hirose Y, Otsubo Y. Electrorheology of suspensions of poly(ethylene glycol)/poly(vinyl acetate) blend particles. Colloids Surf A: Physicochem Eng Asp. 2012;414:486–91.
- Moon IJ, Kim HY, Choi HJ. Conducting poly(N-methylaniline)-coated cross-linked poly(methyl methacrylate) nanoparticle suspension and its steady shear response under electric fields. Colloids Surf A: Physicochem Eng Asp. 2015;481:506–13.
- Goswami S, Brehm T, Filonovich S, Teresa Cidade M. Electrorheological properties of polyaniline-vanadium oxide nanostructures suspended in silicone oil. Smart Mater Struct. 2014;23(10):105012.
- Goswami S, Gonçalves P, Cidade MT. Electrorheological behavior of suspensions of camphorsulfonic acid (CSA) doped polyaniline nanofibers in silicone oil. Phys Scr. 2017;92(7):075801.
- Roman C, García-Morales M, Goswami S, Marques AC, Cidade MT. The electrorheological performance of polyaniline-based hybrid particles suspensions in silicone oil: influence of the dispersing medium viscosity. Smart Mater Struct. 2018;27(7):075001.
- Santos J, Goswami S, Calero N, Cidade MT. Electrorheological behaviour of suspensions in silicone oil of doped polyaniline nanostructures containing carbon nanoparticles. J Intell Mater Syst Struct. 2019;30(5):755–63.
- Cabuk M, Yavuz M, Unal HI. Electrokinetic, electrorheological and viscoelastic properties of polythiophene-graft-chitosan copolymer particles. Colloids Surf A: Physicochem Eng Asp. 2016;510:231–8.
- Patrício P, Leal CR, Pinto LFV, Boto A, Cidade MT. Electro-rheology study of a series of liquid crystal cyanobiphenyls: experimental and theoretical treatment. Liq Cryst. 2012;39(1):25–37.
- Brehm T, Pereira G, Leal CR, Gonçalves C, Borges JP, Cidade MT. Electrorheological characterization of dispersions in silicone oil of encapsulated liquid crystal 4-n-penthyl-4′-cyanobiphenyl in polyvinyl alcohol and in silica. Phys Scr. 2015;90(3):035802.
- Cidade MT, Leal CR, Patrício P. An electro-rheological study of the nematic liquid crystal 4-n-heptyl-4′-cyanobiphenyl. Liq Cryst. 2010;37(10):1305–11.
- Liang Y, Yuan X, Wang L, Zhou X, Ren X, Huang Y, et al. Highly stable and efficient electrorheological suspensions with hydrophobic interaction. J Colloid Interface Sci. 2020;564:381–91.
- Rosell-Llompart J, Grifoll J, Loscertales IG. Electrosprays in the cone-jet mode: From Taylor cone formation to spray development. J Aerosol Sci. 2018;125:2–31.
- Montanero JM. Electrospray. In: Montanero JM, editor. Tip streaming of simple and complex fluids. Cham: Springer Nature Switzerland; 2024. p. 173–200.
- Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 2019;119(8):5298–415.
- Kwon HJ, Hong J, Nam SY, Choi HH, Li X, Jeong YJ, et al. Overview of recent progress in electrohydrodynamic jet printing in practical printed electronics: focus on the variety of printable materials for each component. Mater Adv. 2021;2(17):5593–615.
- Cong C, Li X, Xiao W, Li J, Jin M, Kim SH, et al. Electrohydrodynamic printing for demanding devices: A review of processing and applications. Nanotechnol Rev. 2022;11(1):3305–34.
- An S, Lee MW, Kim NY, Lee C, Al-Deyab SS, James SC, et al. Effect of viscosity, electrical conductivity, and surface tension on direct-current-pulsed drop-on-demand electrohydrodynamic printing frequency. Appl Phys Lett. 2014;105(21):214102.
- Yu M, Ahn KH, Lee SJ. Design optimization of ink in electrohydrodynamic jet printing: Effect of viscoelasticity on the formation of Taylor cone jet. Mater Des. 2016;89:109–15.
- Yu M, Ahn KH, Lee SJ. Interplay between electrical and rheological properties of viscoelastic inks. Appl Phys A. 2016;122(4):355.
- Li X, Jeong YJ, Jang J, Lim S, Kim SH. The effect of surfactants on electrohydrodynamic jet printing and the performance of organic field-effect transistors. Phys Chem Chem Phys. 2018;20(2):1210–20.
- Blanco-Trejo S, Herrada MA, Gañán-Calvo AM, Montanero JM. Electrospray cone-jet mode for weakly viscoelastic liquids. Phys Rev E. 2019;100(4):043114.
- Helgeson ME, Grammatikos KN, Deitzel JM, Wagner NJ. Theory and kinematic measurements of the mechanics of stable electrospun polymer jets. Polymer. 2008;49(12):2924–36.
- Formenti S, Castagna R, Momentè R, Bertarelli C, Briatico-Vangosa F. The relevance of extensional rheology on electrospinning: the polyamide/iron chloride case. Eur Polym J. 2016;75:46–55.
- Akkoyun S, Öktem N. Effect of viscoelasticity in polymer nanofiber electrospinning: Simulation using FENE-CR model. Eng Sci Technol, Int J. 2021;24(3):620–30.
- Rijo PC, Galindo-Rosales FJ. The building blocks behind the electrohydrodynamics of non-polar 2D-inks. Appl Mater Today. 2024;36:102042.
- Rijo PC, Galindo-Rosales FJ. Rheological behavior of molybdenum disulfide (MoS2) inks under electric fields: influence of concentration and voltage; 2024. 10.48550/arXiv.2408.11506.
- Sadek SH, Najafabadi HH, Galindo-Rosales FJ. Capillary breakup extensional electrorheometry (CaBEER). J Rheol. 2019;64(1):43–54.
- Gañán-Calvo AM, Rebollo-Muñoz N, Montanero JM. The minimum or natural rate of flow and droplet size ejected by Taylor cone–jets: physical symmetries and scaling laws. N J Phys. 2013;15(3):033035.
- Peer P, Stenicka M, Filip P, Pavlinek V. Comparison of electrorheological measurements based on different methods of electric field generation. Appl Rheol. 2014;24(4):1–4.
- Morrison FA. Understanding rheology. New York: Oxford University Press; 2001.
- García-Morales M, Fernández-Silva SD, Roman C, Delgado MA. Electro-active control of the viscous flow and tribological performance of ecolubricants based on phyllosilicate clay minerals and castor oil. Appl Clay Sci. 2020;198:105830.
- Maxwell JC. A treatise of electricity and magnetism. Oxford: Clarendon Press; 1873.
- Cruz RCD, Reinshagen J, Oberacker R, Segadães AM, Hoffmann MJ. Electrical conductivity and stability of concentrated aqueous alumina suspensions. J Colloid Interface Sci. 2005;286(2):579–88.
- Whittle M, Bullough WA, Peel DJ, Firoozian R. Dependence of electrorheological response on conductivity and polarization time. Phys Rev E. 1994;49(6):5249–59.
- Liu Y, Zhao J, He F, Zheng C, Lei Q, Zhao X, et al. Ion transport, polarization and electro-responsive elelctrorheological effect of self-crosslinked poly(ionic liquid)s with different counterions. Polymer. 2019;177:149–59.
- Dong Y, Wang Y, Liu Y, Ding B, Li Y, Li Z, et al. Interfacial polarization and electrorheological effect of homo-poly(ionic liquid) and poly(ionic liquid)-hexyl methacrylate copolymer microsphere particles. Polymer. 2024;299:126970.
- Alexander CKS, Matthew NO. Fundamentals of electric circuits. 4th edn. New York: McGraw-Hill; 2009.
- Ewoldt RH, Johnston MT, Caretta LM. Experimental challenges of shear rheology: how to avoid bad data. In: Spagnolie SE, editor. Complex fluids in biological systems: experiment, theory, and computation. New York, NY: Springer New York; 2015. p. 207–41.
- Münstedt H. Extensional rheology and processing of polymeric materials. Int Polym Process. 2018;33(5):594–618.
- Rubio M, Rodríguez-Díaz P, López-Herrera JM, Herrada MA, Gañán-Calvo AM, Montanero JM. The role of charge relaxation in electrified tip streaming. Phys Fluids. 2023;35(1):017131.
- García-Ortiz JH, Sadek S, Galindo-Rosales FJ. Influence of the polarity of the electric field on electrorheometry. Appl Sci. 2019;9(24):5273.
- Rubio M, Vega EJ, Herrada MA, Montanero JM, Galindo-Rosales FJ. Breakup of an electrified viscoelastic liquid bridge. Phys Rev E. 2020;102(3):033103.
- Wikipedia. Joule Heating: Wikipedia, The Free Encyclopedia. Available from: https://en.wikipedia.org/wiki/Joule_heating.
- Schlieren Optics: Harvard University. Available from: https://sciencedemonstrations.fas.harvard.edu/presentations/schlieren-optics.
- Dinic J, Zhang Y, Jimenez LN, Sharma V. Extensional relaxation times of dilute, aqueous polymer solutions. ACS Macro Lett. 2015;4(7):804–8.
- Robertson BP, Calabrese MA. Evaporation-controlled dripping-onto-substrate (DoS) extensional rheology of viscoelastic polymer solutions. Sci Rep. 2022;12(1):4697.
- Rubio M, Ponce-Torres A, Herrada MA, Gañán-Calvo AM, Montanero JM. Effect of an axial electric field on the breakup of a leaky-dielectric liquid filament. Phys Fluids. 2021;33(9):092114.
- Castrejón-Pita JR, Castrejón-Pita AA, Thete SS, Sambath K, Hutchings IM, Hinch J, et al. Plethora of transitions during breakup of liquid filaments. Proc Natl Acad Sci. 2015;112(15):4582–7.
- Ponce-Torres A, Rubio M, Herrada MA, Eggers J, Montanero JM. Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Sci Rep. 2020;10(1):16065.
- Guo L, Duan Y, Huang Y, Yin Z. Experimental study of the influence of ink properties and process parameters on ejection volume in electrohydrodynamic jet printing. Micromachines. 2018;9(10):522.
- Campo-Deaño L, Clasen C. The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments. J Non-Newtonian Fluid Mech. 2010;165(23–24):1688–99.
- Mohammadi K, Movahhedy MR, Khodaygan S. Colloidal particle reaction and aggregation control in the electrohydrodynamic 3D printing technology. Int J Mech Sci. 2021;195:106222.
- Barrero A, Gañán-Calvo AM, Dávila J, Palacios A, Gómez-González E. The role of the electrical conductivity and viscosity on the motions inside Taylor cones. J Electrost. 1999;47(1):13–26.
- Rijo PC, Vega EJ, Galindo-Rosales FJ, Montanero JM. On the electrohydrodynamic jet printing of 2D material-based inks for printed electronics. Phys Fluids. 2024;36(11).
- Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–73.
- Galindo-Rosales FJ, Campo-Deaño L, Sousa PC, Ribeiro VM, Oliveira MSN, Alves MA, et al. Viscoelastic instabilities in micro-scale flows. Exp Therm Fluid Sci. 2014;59:128–39.
- Galindo-Rosales FJ, Oliveira MSN, Alves MA. Optimized cross-slot microdevices for homogeneous extension. RSC Adv. 2014;4(15):7799–804.
- Haward SJ, Oliveira MSN, Alves MA, McKinley GH. Optimized cross-slot flow geometry for microfluidic extensional rheometry. Phys Rev Lett. 2012;109(12):128301.
- Haward SJ, Pimenta F, Varchanis S, Carlson DW, Toda-Peters K, Alves MA, et al. Extensional rheometry of mobile fluids. Part I: OUBER, an optimized uniaxial and biaxial extensional rheometer. J Rheol. 2023;67(5):995–1009.
- Haward SJ, Varchanis S, McKinley GH, Alves MA, Shen AQ. Extensional rheometry of mobile fluids. Part II: Comparison between the uniaxial, planar, and biaxial extensional rheology of dilute polymer solutions using numerically optimized stagnation point microfluidic devices. J Rheology. 2023;67(5):1011–30.
- Pimenta F, Sousa RG, Alves MA. Optimization of flow-focusing devices for homogeneous extensional flow. Biomicrofluidics. 2018;12(5):054103.
- Zografos K, Pimenta F, Alves MA, Oliveira MSN. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation. Biomicrofluidics. 2016;10(4):043508.
- Pipe CJ, McKinley GH. Microfluidic rheometry. Mech Res Commun. 2009;36(1):110–20.
- Squires TM, Mason TG. Fluid mechanics of microrheology. Annu Rev Fluid Mech. 2010;42(1):413–38.
- Galindo-Rosales FJ, Alves MA, Oliveira MSN. Microdevices for extensional rheometry of low viscosity elastic liquids: a review. Microfluid Nanofluid. 2013;14:1–19. 10.1007/s10404-012-1028-1.
- Haward SJ. Microfluidic extensional rheometry using stagnation point flow. Biomicrofluidics. 2016;10(4):043401.
- Oliveira MSN, Alves MA, Pinho FT. Microfluidic flows of viscoelastic fluids. Transport and mixing in laminar flows. Wiley; 2011. p. 131–74.
- Baek SG. Micro slit viscometer with monolithically integrated pressure sensors, Pat., US7770436B2, 2007.
- RheoSense. How it works VROC technology: RheoSense. Available from: https://www.rheosense.com/technology.
- Ober TJ, Haward SJ, Pipe CJ, Soulages J, McKinley GH. Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheol Acta. 2013;52(6):529–46.
- Colin AC, Cristobal G, Guillot P, Joanicot M. Method and installation for determining rheological characteristics of a fluid, and corresponding identifying method, Pat., EP1844312B1, 2012.
- Galindo-Rosales FJ. Complex fluids and rheometry in microfluidics. In: Galindo-Rosales FJ, editor. Complex fluid-flows in microfluidics. Cham: Springer; 2018. p. 1–23.
- Alarcon T, Rodríguez-Villarreal AI, Colomer-Farrarons J, Hernández-Machado A, Català PM. Method and apparatus for measuring rheological properties of newtonian and non-newtonian fluids, Pat., EP3295149B1, 2015.
- Zimmerman WB, Rees JM. Rheometer and rheometric method, Pat., GB2501530A, 2013.
- Galindo-Rosales FJ, Marques PVDS, Ferreira HJDNA. Microelectrorheometer for characterizing electrorheological fluids, Pat., WO2023047176A1, 2023.
- Monserrat Lopez D, Rottmann P, Puebla-Hellmann G, Drechsler U, Mayor M, Panke S, et al. Direct electrification of silicon microfluidics for electric field applications. Microsyst Nanoeng. 2023;9(1):81.
- Sadek SH, Pimenta F, Pinho FT, Alves MA. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields. Electrophoresis. 2017;38(7):1022–37.
- Guo W, Tao Y, Mao K, Liu W, Xue R, Ge Z, et al. Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments. Lab Chip. 2023;23(1):157–67.
- Nguyen N-V, Le Manh T, Nguyen TS, Le VT, Van Hieu N. Applied electric field analysis and numerical investigations of the continuous cell separation in a dielectrophoresis-based microfluidic channel. J Sci: Adv Mater Devices. 2021;6(1):11–8.
- Hossan MR, Dutta D, Islam N, Dutta P. Review: Electric field driven pumping in microfluidic device. Electrophoresis. 2018;39(5–6):702–31.
- Singh R, Bahga SS, Gupta A. Electrohydrodynamic droplet formation in a T-junction microfluidic device. J Fluid Mech. 2020;905:A29.