Have a personal or library account? Click to login
Regulation control of an underactuated mechanical system with discontinuous friction and backlash Cover

Regulation control of an underactuated mechanical system with discontinuous friction and backlash

Open Access
|Jan 2018

References

  1. Adetola, V., DeHaan, D. and Guay, M. (2009). Adaptive model predictive control for constrained nonlinear systems, Systems & Control Letters 58(5): 320-326.10.1016/j.sysconle.2008.12.002
  2. Aguilar, L., Orlov, Y. and Acho, L. (2003). Nonlinear H∞ control of nonsmooth time varying systems with application to friction mechanical manipulators, Automatica 39(9): 1531-1542.10.1016/S0005-1098(03)00148-1
  3. Brahim, A.B., Dhahri, S., Hmida, F.B. and Sellami, A. (2015). An H∞ sliding mode observer for Takagi-Sugeno nonlinear systems with simultaneous actuator and sensor faults, International Journal of Applied Mathemat ics and Computer Science 25(3): 547-559, DOI: 10.1515/amcs-2015-0041.10.1515/amcs-2015-0041
  4. Branicky, M. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control 43(4): 475-482.10.1109/9.664150
  5. Brogliato, B. (1999). Nonsmooth Mechanics, Springer, London. 10.1007/978-1-4471-0557-2
  6. Brogliato, B., Niculescu, S.-I. and Orhant, P. (1997). On the control of finite-dimensional mechanical systems with unilateral constraints, IEEE Transactions on Automatic Control 42(2): 200-215.10.1109/9.554400
  7. Castaños, F. and Fridman, L. (2006). Analysis and design of integral sliding manifolds for systems with unmatched perturbations, IEEE Transactions on Automatic Control 51(5): 853 - 858.10.1109/TAC.2006.875008
  8. Castaños, F. and Fridman, L. (2011). Dynamic switching surfaces for output sliding mode control: An H∞ approach, Automatica 47(9): 1957-1961.10.1016/j.automatica.2011.05.012
  9. Chang, Y.-C. and Lee, C.-H. (1999). Robust tracking control for constrained robots actuated by DC motors without velocity measurements, IEE Proceedings-Control Theory and Applications 146(2): 147-156.10.1049/ip-cta:19990517
  10. Chiu, C.-S., Lian, K.-Y. and Wu, T.-C. (2004). Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators, Automatica 40(12): 2111-2119.10.1016/S0005-1098(04)00195-5
  11. Christophersen, F.J. (2007). Optimal Control of Constrained Piecewise Affine Systems, Lecture Notes in Control and Information Sciences, Springer, Berlin/Heidelberg.
  12. Doyle, J.C., Glover, K., Khargonekar, P.P. and Francis, B.A. (1989). State-space solutions to standard H2 and H∞ control problems, IEEE Transactions on Automatic Control 34(8): 831-847.10.1109/9.29425
  13. Durmaz, B., O¨ zgo¨ren, M. K. and Salamci,M. U. (2011). Sliding mode control for non-linear systems with adaptive sliding surfaces, Transactions of the Institute of Measurement and Control 34(1): 56-90.10.1177/0142331210384648
  14. Fallaha, C.J., Saad, M., Kanaan, H.Y. and Al-Haddad, K. (2011). Sliding-mode robot control with exponential reaching law, IEEE Transactions on Industrial Electronics 58(2): 600-610.10.1109/TIE.2010.2045995
  15. Filippov, A.F. (1988). Differential Equations with Discontinuous Right-Handsides, Kluwer, Dordercht.10.1007/978-94-015-7793-9
  16. Ghafari-Kashani, A., Faiz, J. and Yazdanpanah, M. (2010). Integration of non-linear H∞ and sliding mode control techniques for motion control of a permanent magnet synchronous motor, IET Electric Power Applications 4(4): 267-280.10.1049/iet-epa.2009.0108
  17. Isidori, A. (2000). A tool for semiglobal stabilization of uncertain non minimum-phase nonlinear systems via output feedback, IEEE Transactions on Automatic Control 48(10): 1817-1827.10.1109/TAC.2000.880972
  18. Isidori, A. and Astolfi, A. (1992). Disturbance attenuation and H∞-control via measurement feedback in nonlinear systems, IEEE Transactions on Automatic Control 37(9): 1283-1293.10.1109/9.159566
  19. Kazerooni, H. (1990). Contact instability of the direct drive robot when constrained by a rigid environment, IEEE Transactions on Automatic Control 35(6): 710-714.10.1109/9.53550
  20. Khalil, H. (2002). Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ.
  21. Kwakernaak, H. (1993). Robust control and H∞-optimization-tutorial paper, Automatica 29(2): 255-273.10.1016/0005-1098(93)90122-A
  22. Leine, R. I. and Van de Wouw, N. (2010). Stability and Convergence of Mechanical Systems with Unilateral Constraints, Springer, Berlin.
  23. Lian, J. and Zhao, J. (2010). Robust H-infinity integral sliding mode control for a class of uncertain switched nonlinear systems, Journal of Control Theory and Applications 8(4): 521-526.10.1007/s11768-010-8007-4
  24. Lian, K.-Y. and Lin, C.-R. (1998). Sliding-mode motion/force control of constrained robots, IEEE Transactions on Automatic Control 43(8): 1101-1103.10.1109/9.704980
  25. Luo, N., Tan, Y. and Dong, R. (2015). Observability and controllability analysis for sandwich systems with backlash, International Journal of Applied Mathematics and Computer Science 25(4): 803-814, DOI: 10.1515/amcs-2015-0057.10.1515/amcs-2015-0057
  26. Mansard, N. and Khatib, O. (2008). Continuous control law from unilateral constraint, IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena, CA, USA, pp. 3359-3364.
  27. Menini, L. and Tornambe, A. (2001). Dynamic position feedback stabilisation of multidegrees-of-freedom linear mechanical systems subject to nonsmooth impacts, IEE Proceedings-Control Theory and Applications 148(6): 488-496.10.1049/ip-cta:20010713
  28. Orlov, Y., Aoustin, Y. and Chevallereau, C. (2011). Finite time stabilization of a perturbed double integrator. I: Continuous sliding mode-based output feedback synthesis, IEEE Transactions on Automatic Control 56(3): 614-618.10.1109/TAC.2010.2090708
  29. Paden, B. and Sastry, S. (1987). A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators, IEEE Transactions on Circuits and Systems 34(1): 73-81.10.1109/TCS.1987.1086038
  30. Perez, M., Jimenez, E. and Camacho, E. (2010). Design of an explicit constrained predictive sliding mode controller, IET Control Theory & Applications 4(4): 552 -562.10.1049/iet-cta.2009.0057
  31. Potini, A., Tornambe, A., Menini, L., Abdallah, C. and Dorato, P. (2006). Finite-time control of linear mechanical systems subject to non-smooth impacts, 14th Mediterranean Conference on Control and Automation, MED’06, Ancona, Italy, pp. 1-5.
  32. Rascón, R., Alvarez, J. and Aguilar, L. (2012). Sliding mode control with H∞: Attenuator for unmatched disturbances in a mechanical system with friction and a force constraint, 12th International Workshop on Variable Structure Systems (VSS), Mumbai, Maharashtra, India, pp. 434-439.
  33. Rascón, R., Álvarez, J. and Aguilar, L.T. (2014). Control robusto de posici´on para un sistema mec´anico subactuado con fricci´on y holgura el´astica, Revista Iberoamericana de Autom´atica e Inform´atica Industrial 11(3): 275-284.10.1016/j.riai.2014.05.005
  34. Rascón, R., Alvarez, J. and Aguilar, L.T. (2016). Discontinuous H∞ control of underactuated mechanical systems with friction and backlash, International Journal of Control, Automation and Systems 14(5): 1213-1222.10.1007/s12555-014-0498-1
  35. Sabanovic, A., Elitas, M. and Ohnishi, K. (2008). Sliding modes in constrained systems control, IEEE Transactions on Industrial Electronics 55(9): 3332-3339.10.1109/TIE.2008.928112
  36. Safonov, M.G., Limebeer, D.J.N. and Chiang, R.Y. (1989). Simplifying the H∞ theory via loop-shifting, matrix-pencil and descriptor concepts, International Journal of Control 50(6): 2467-2488.10.1080/00207178908953510
  37. Shevitz, D. and Paden, B. (1994). Lyapunov stability theory of nonsmooth systems, IEEE Transactions on Automatic Control 39(9): 1910-1914.10.1109/9.317122
  38. Tseng, C.-S. (2005). Mixed H2/H∞ adaptive tracking control design for uncertain constrained robots, Asian Journal of Control 7(3): 296-309.10.1111/j.1934-6093.2005.tb00239.x
  39. Utkin, V. (1978). Sliding Modes and Their Applications, Mir, Moscow.
  40. Utkin, V. (1992). Sliding Modes in Control Optimization, Springer, Berlin. 10.1007/978-3-642-84379-2
  41. Virgin, L.N. (2000). Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration, Cambridge University Press, New York, NY.10.1017/9781139175227
  42. Zhu, J. and Khayati, K. (2015). A new approach for adaptive sliding mode control: Integral/exponential gain law, Transactions of the Institute of Measurement and Control 38(4): 385-394.10.1177/0142331215583328
DOI: https://doi.org/10.1515/amcs-2017-0055 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 785 - 797
Submitted on: Oct 28, 2016
Accepted on: Jun 28, 2017
Published on: Jan 13, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Raúl Rascón, David Rosas, Daniel Hernandez-Balbuena, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.