Have a personal or library account? Click to login
Data mining methods for prediction of air pollution Cover
Open Access
|Jul 2016

References

  1. Agirre-Basurko, E., Ibarra-Berastegi, G. and Madriaga, I. (2006). Regression and multilayer perceptron-based models for forecast hourly O3 and nO2 levels in the Bilbao area, Environmental Modelling and Software 21(4): 430-446.10.1016/j.envsoft.2004.07.008
  2. Bhanu, B. and Lin, Y. (2003). Genetic algorithm based feature selection for target detection in SAR images, Image and Vision Computing 21(4): 591-608.10.1016/S0262-8856(03)00057-X
  3. Breiman, L. (2001). Random forests, Machine Learning 45(11): 5-32.10.1023/A:1010933404324
  4. Brunelli, U., Piazza, V., Pignato, L. and Sorbello, F.and Vitabile, S. (2007). Two-day ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in urban area of Palermo, Italy, Atmospheric Environment 41(14): 2967-2995.10.1016/j.atmosenv.2006.12.013
  5. Cloete, I. and Zurada, J. (2000). Knowledge-based Neurocomputing, MIT Press, Cambridge, MA.10.7551/mitpress/4070.001.0001
  6. Goldberg, D. (2013). Genetic Algorithms in Search, Optimization, and Machine Learning, Pearson Education, Upper Saddle River, NJ.
  7. Grivas, G. and Chaloulakou, A. (2006). Artificial neural network models for predictions of PM10 hourly concentrations in greater area of Athens, Atmospheric Environment 40(7): 1216-1229.10.1016/j.atmosenv.2005.10.036
  8. Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of Machine Learning Research 3(1): 1158-1182.
  9. Haykin, S. (2000). Neural Networks. A Comprehensive Foundation, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ.
  10. Matlab (2014). Matlab User Manual-Statistics Toolbox, MathWorks, Natic, MA.
  11. Mesin, L., Taormina, R. and Pasero, E. (2010). A feature selection method for air quality forecasting, Proceedings of the International Conference on Artificial Neural Networks, Thessaloniki, Greece, pp. 489-494.
  12. Osowski, S., Siwek, K. and Szupiluk, R. (2009). Ensemble neural network approach for accurate load forecasting in a power system, International Journal of Applied Mathematics and Computer Science 19(2): 303-315, DOI: 10.2478/v10006-009-0026-2.10.2478/v10006-009-0026-2
  13. Perez, P. and Trier, A. (2001). Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile, Atmospheric Environment 35(21): 1783-1789.10.1016/S1352-2310(00)00288-0
  14. Scholkopf, B. and Smola, A. (2002). Learning with Kernels, MIT Press, Cambridge, MA.
  15. Siwek, K., Osowski, S. and Sowiński, M. (2010). Neural predictor ensemble for accurate forecasting of PM10 pollution, Proceedings of the International Joint Conference on Neural Networks, Barcelona, Spain, pp. 1-7.
  16. Siwek, K., Osowski, S. and Sowiński, M. (2011). Evolving the ensemble of predictors model for forecasting the daily average PM10, International Journal of Environment and Pollution 46(3/4): 199-215.10.1504/IJEP.2011.045479
  17. Sprent, P. and Smeeton, N. (2007). Applied Nonparametric Statistical Methods, Chapman and Hall/CRC, Boca Raton, FL.
  18. Sumi, S.M., Zaman, M.F. and Hirose, H. (2012). A rainfall forecasting method using machine learning models and its application to the Fukuoka city case, International Journal of Applied Mathematics and Computer Science 22(4): 841-854, DOI: 10.2478/v10006-012-0062-1.10.2478/v10006-012-0062-1
  19. Tan, P.N., Steinbach, M. and Kumar, V. (2006). Introduction to Data Mining, Pearson Education, Boston, MA.
  20. Vafaie, H. and De Jong, K. (1992). Genetic algorithms as a tool for feature selection in machine learning, Proceedings of the 4th International Conference on Tools with Artificial Intelligence, Arlington, VA, USA, pp. 1-6.
  21. Zhang, T. (2009). Adaptive forward-backward greedy algorithm for sparse learning with linear models, in D. Koller et al. (Eds.), NIPS: Proceedings of Neural Information Processing Systems, MIT Press, Cambridge, MA, pp. 1921-1928.
DOI: https://doi.org/10.1515/amcs-2016-0033 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 467 - 478
Submitted on: Jan 29, 2015
|
Accepted on: Sep 20, 2015
|
Published on: Jul 2, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Krzysztof Siwek, Stanisław Osowski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.