Have a personal or library account? Click to login
An optimal path planning problem for heterogeneous multi-vehicle systems Cover

An optimal path planning problem for heterogeneous multi-vehicle systems

Open Access
|Jul 2016

References

  1. Applegate, D. (2006). The Traveling Salesman Problem: A Computational Study, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ.
  2. Boyd, S. and Vandenberghe, L. (2009). Convex Optimization, 7th Edn., Cambridge University Press, New York, NY.
  3. Fagerholt, K. (1999). Optimal fleet design in a ship routing problem, International Transactions in Operational Research 6(5): 453-464.10.1111/j.1475-3995.1999.tb00167.x
  4. Garone, E., Determe, J.-F. and Naldi, R. (2012). A travelling salesman problem for a class of heterogeneous multi-vehicle systems, 2012 IEEE 51st Annual Conference on Decision and Control (CDC), Maui, HI, USA, pp. 1166-1171.
  5. Gurobi Optimization (2013). Gurobi optimizer reference manual, http://www.gurobi.com.
  6. Hoff, A., Andersson, H., Christiansen, M., Hasle, G. and Lkketangen, A. (2010). Industrial aspects and literature survey: Fleet composition and routing, Computers & Operations Research 37(12): 2041 - 2061.10.1016/j.cor.2010.03.015
  7. ILOG (2007). 11.0 users manual, ILOG CPLEX Division, Incline Village, NV.
  8. Kerrigan, E. and Maciejowski, J. (2000). Soft constraints and exact penalty functions in model predictive control, Control 2000 Conference, Cambridge, UK.
  9. Klaučo, M., Blažek, S., Kvasnica, M. and Fikar, M. (2014). Mixed-integer SOCP formulation of the path planning problem for heterogeneous multi-vehicle systems, European Control Conference 2014, Strasbourg, France, pp. 1474-1479.
  10. Kvasnica, M. (2008). Efficient Software Tools for Control and Analysis of Hybrid Systems, Ph.D. thesis, ETH Zurich, Zurich.
  11. Löfberg, J. (2004). YALMIP, http://users.isy.liu.se/johanl/yalmip/.
  12. Mathew, N., Smith, S. and Waslander, S. (2014). Optimal path planning in cooperative heterogeneous multi-robot delivery systems, 11th International Workshop on the Algorithmic Foundations of Robotics, Istanbul, Turkey.10.1007/978-3-319-16595-0_24
  13. Miller, C.E., Tucker, A.W. and Zemlin, R.A. (1960). Integer programming formulation of traveling salesman problems, Journal of the ACM 7(4): 326-329.10.1145/321043.321046
  14. Tung, D.V. and Pinnoi, A. (2000). Vehicle routingscheduling for waste collection in Hanoi, European Journal of Operational Research 125(3): 449 - 468.10.1016/S0377-2217(99)00408-7
  15. Williams, H. (1993). Model Building in Mathematical Programming, 3rd Edn., John Wiley & Sons, Hoboken, NJ.
DOI: https://doi.org/10.1515/amcs-2016-0021 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 297 - 308
Submitted on: Jun 24, 2015
Accepted on: Jan 16, 2016
Published on: Jul 2, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Martin Klaučo, Slavomír Blažek, Michal Kvasnica, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.