Have a personal or library account? Click to login
Magneto Convection in a Layer of Nanofluid With Soret Effect Cover

Magneto Convection in a Layer of Nanofluid With Soret Effect

By: Ramesh Chand and  Gian Chand Rana  
Open Access
|Aug 2015

References

  1. 1. Alchaar S., Vesseur P., Bilgen E.(1995), Effect of a magnetic field on the onset of convection in a porous medium, Heat and Mass Transfers, 30, 259-267.10.1007/BF01602772
  2. 2. Alloui Z. , Vasseur P., Reggio M. (2010), Natural convection of nanofluids in a shallow cavity heated from below, International Journal of Thermal Science, 50(3), 385-393.10.1016/j.ijthermalsci.2010.04.006
  3. 3. Bahloul A., Boutana N., Vasseur P. (2003), Double-diffusive and Soret-induced convection in a shallow horizontal porous layer, J. Fluid Mech., 491, 325-352.
  4. 4. Buongiorno J.(2006), Convective Transport in Nanofluids, ASMEJournal of Heat Transfer, 12, 240-250.10.1115/1.2150834
  5. 5. Chand R.(2013), On the onset of Rayleigh-Bénard convection in a layer of nanofluid in Hydromagnetics, Int. J. of Nanoscience, 12(6), 1350038-7.10.1142/S0219581X13500385
  6. 6. Chand R., Kango S. K., Rana G. C. (2014),Thermal Instability in Anisotropic Porous Medium Saturated by a Nanofluid-A Realistic Approach, NSNTAIJ, 8(12), 445-453.
  7. 7. Chand R., Kango S. K., Singh V. (2015a), Megneto-convection in a layer of Maxwell visco-elastic fluid in a porous medium with Soret effect, Research J. of Engineering and Tech., 6(7), 23-30.10.5958/2321-581X.2015.00005.7
  8. 8. Chand R., Rana G. C. (2012a), Dufour and Soret effects on the thermosolutal instability of Rivlin-Ericksen elastico-viscous fluid in porous medium, Z. Naturforsch, 67a, 685-691.10.5560/zna.2012-0074
  9. 9. Chand R., Rana G. C. (2012b), Oscillating convection of nanofluid in porous medium, Transp Porous Med., 95, 269-284.10.1007/s11242-012-0042-9
  10. 10. Chand R., Rana G. C. (2012c), On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium, Int. J. of Heat and Mass Transfer, 55, 5417-5424.10.1016/j.ijheatmasstransfer.2012.04.043
  11. 11. Chand R., Rana G. C.(2012d),Thermal instability of Rivlin-Ericksen elastico-viscous nanofluid saturated by a porous medium, J. Fluids Eng., 134(12), 21203-7.10.1115/1.4007901
  12. 12. Chand R., Rana G. C.(2014a), Double diffusive convection in a layer of Maxwell visco-elastic fluid in porous medium in the presence of Soret and Dufour effects, Journal of Fluids, 2014, 1-7.10.1155/2014/479107
  13. 13. Chand R., Rana G. C. (2014b), Hall Effect on the thermal instability in a horizontal layer of nanofluid, Journal of Nanofluids, 3, 247-253.10.1166/jon.2014.1100
  14. 14. Chand R., Rana G. C. (2014c),Thermal instability in a Brinkman porous medium saturated by nanofluid with no nanoparticle flux on boundaries, Special Topics & Reviews in Porous Media: An International Journal, 5(4), 277-286.10.1615/SpecialTopicsRevPorousMedia.v5.i4.10
  15. 15. Chand R., Rana G. C. (2015), Magneto convection in a layer of nanofluid in porous medium-A more realistic approach, Journal of Nanofluids, 4, 196-202.10.1166/jon.2015.1142
  16. 16. Chand R., Rana G. C., Hussein A. K. (2015b),On the onset of thermal instability in a low Prandtl number nanofluid layer in a porous medium, Journal of Applied Fluid Mechanics, 8(2), 265-272.10.18869/acadpub.jafm.67.221.22830
  17. 17. Chandrasekhar S.(1961), Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Dover Publication, New York.
  18. 18. Choi S.(1995), Enhancing Thermal Conductivity of Fluids with Nanoparticles in: D.A. Siginer and H. P. Wang (Eds), Developments and Applications of Non-Newtonian Flows, ASMEFED, Vol. 231/MDVol. 66, 99-105.
  19. 19. Gupta U., Ahuja J., Wanchoo R. K. (2013), Magneto-convection in a nanofluid layer, Int. J. Heat and Mass Transfer, 64, 1163-1171.10.1016/j.ijheatmasstransfer.2013.05.035
  20. 20. Kim J.,Kang Y.T. ,Choi C.K. (2011),Analysis of convective ins ta bi l i t y and heat transfer characteristics of nanofluids, Physics of Fluid, 16(7), 2395-2401.10.1063/1.1739247
  21. 21. Knobloch E., (1980), Convection in binary fluids, Phys. Fluids, 23(9), 1918-1920.
  22. 22. Kuznetsov A. V., Nield D. A. (2010a), Effect of local thermal nonequilibrium on the onset of convection in a porous medium layer saturated by a nanofluid, Transport in Porous Media, 83, 425-436.10.1007/s11242-009-9452-8
  23. 23. Kuznetsov A. V., Nield D. A. (2010b), The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium, Transport in Porous Media, 85(3),941-952.10.1007/s11242-010-9600-1
  24. 24. Kuznetsov A. V., Nield D. A.(2011), Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model, Transp. Porous Medium, 81(3), 409-422.
  25. 25. Motsa S. S. (2008), On the onset of convection in a porous layer in the presence of Dufour and Soret effects, SJPAM, 3, 58-65.
  26. 26. Nield D. A. (1968), Onset of thermohaline convection in a porous medium, Water Resour. Res., 4, 553-560.
  27. 27. Nield D. A., Kuznetsov A. V. (2009), Thermal instability in a porous medium layer saturated by a nanofluid, Int. J. Heat Mass Transf., 52, 5796-5801.
  28. 28. Nield D. A., Kuznetsov A. V. (2010a), The on set of convection in a horizontal nanofluid layer of finite depth, European Journal of Mechanics B/Fluids, 2, 217-223.10.1016/j.euromechflu.2010.02.003
  29. 29. Nield D. A., Kuznetsov A. V. (2010b), The effect of local thermal non-equilibrium on the onset of convection in a nanofluid, J. Heat Transfer, 132(5),052405-052411.10.1115/1.4000474
  30. 30. Nield D. A., Kuznetsov A. V. (2010b), The onset of double-diffusive convection in a nanofluid layer, Int. J. of Heat and Fluid Flow, 32(4), 771-776.10.1016/j.ijheatfluidflow.2011.03.010
  31. 31. Nield D. A., Kuznetsov A. V. (2011a), The onset of convection in a layer of cellular porous material: Effect of temperature-dependent conductivity arising from radiative transfer, J. Heat Transfer, 132(7), 074503-4.10.1115/1.4001125
  32. 32. Nield D. A., Kuznetsov A. V. (2014), Thermal instability in a porous medium layer saturated by a nanofluid: A revised model, Int. J. of Heat and Mass Transfer, 4, 68, 211-214.10.1016/j.ijheatmasstransfer.2013.09.026
  33. 33. Nield D. A., Manole D. M., Lage J. L. (1993), Convection induced by inclined thermal and thermosolutal gradients in a shallow horizontal layer of porous medium, J. Fluid Mech., 257, 559-568.
  34. 34. Patil R. P., Rudraiah N. (1973), Stability of hydromagnetic thermoconvective flow through porous medium, Transactions of the ASME Journal of Applied Mechanics, 40(E), 879-884.10.1115/1.3423181
  35. 35. Rudraiah N., Shrimani P. K., Friedrich R. (1982), Finite amplitude convection in two component fluid saturated porous layer, Int. J. Heat and MassTransfer, 25, 715-722.10.1016/0017-9310(82)90177-6
  36. 36. Tzou D. Y. (2008a), Thermal in stability of nanofluids in natural convection, International Journal of Heat and Mass Transfer, 51, 2967-2979.10.1016/j.ijheatmasstransfer.2007.09.014
  37. 37. Tzou D. Y. (2008b), Instability of nanofluids in natural convection, ASME Journal of Heat Transfer, 130, 1-9.10.1115/1.2908427
  38. 38. Yadav D., Bhargava R., Agrawal G. S. (2013), Thermal instability in a nanofluid layer with a vertical magnetic field, J. Eng. Math., 80, 147-164.
DOI: https://doi.org/10.1515/ama-2015-0011 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 63 - 69
Submitted on: Feb 22, 2015
Accepted on: Jul 24, 2015
Published on: Aug 14, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Ramesh Chand, Gian Chand Rana, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.