Have a personal or library account? Click to login
Cutting Capacity and Wear Resistance of Cr2O3-AlN Nanocomposite Ceramic Obtained by Field Activated Sintering Technique (Fast) Cover

Cutting Capacity and Wear Resistance of Cr2O3-AlN Nanocomposite Ceramic Obtained by Field Activated Sintering Technique (Fast)

Open Access
|Oct 2018

References

  1. 1. Wegener K., Kuster F., Weikert S., Weiss L., Stirnimann J.: Success Story Cutting. Procedia CIRP, 46 (2016) 512–524.10.1016/j.procir.2016.04.110
  2. 2. Huang X., Etsion I., Shao T.: Effects of elastic modulus mismatch between coating and substrate on the friction and wear properties of TiN and TiAlN coating systems. Wear, 338-339 (2015) 54-61.
  3. 3. Morozow D., Narojczyk J., Rucki M., Lavrynenko S.: Wear Resistance of the Cermet Cutting Tools After Aluminum (Al+) and Nitrogen (N+) Ion Implantation. Adv. Mater. Sci., 18 (2018) 92–99.
  4. 4. Kumar Ch.S., Patel S.K.: Application of surface modification techniques during hard turning: Present work and future prospects. Int. J. Ref. Met. Hard Mater., 76 (2018) 112-127
  5. 5. Gevorkian E., Lavrynenko S., Rucki M., Siemiątkowski Z., Kislitsa M.: Ceramic cutting tools out of nanostructured refractory compounds. Int. J. Ref. Met. Hard Mater., 68 (2017) 142-144.
  6. 6. Ji W., Zou B., Zhang Sh., Xing H., Yun H., Wang Y.: Design and fabrication of gradient cermet composite cutting tool, and its cutting performance. J All. Comp., 732 (2018) 25-31.
  7. 7. Slipchenko K., Petrusha I., Turkevich V., Johansson J., Bushlya V, Ståhl J.E.: Investigation of the mechanical properties and cutting performance of cBN-based cutting tools with Cr3C2 binder phase. Procedia CIRP, 72 (2018) 1433-1438.
  8. 8. Pittari J.J., Murdoch H.A., Kilczewski S.M., Hornbuckle B.C., Swab J.J., Darling K.A., Wright J.C.: Sintering of tungsten carbide cermets with an iron-based ternary alloy binder: Processing and thermodynamic considerations. Int. J. Ref. Met. Hard Mater., 76 (2018) 1-11.
  9. 9. Cheng M., Liu H., Zhao B., Huang Ch, Yao P., Wang B.: Mechanical properties of two types of Al2O3/TiC ceramic cutting tool material at room and elevated temperatures. Ceramics International, 43 (2017) 13869-13874.
  10. 10. Basu B., Lee J.H., Kim D.Y.: Development of WC-ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc., 87(2) (2004) 317–319.
  11. 11. Malek O., Lauwers B., Perez Y., Baets P., Vleugels J.: Processing of ultrafine ZrO2 toughened WC composites. J. Eur. Ceram. Soc., 29(16) (2009) 3371–3378.
  12. 12. Pedzich Z., Haberko K., Piekarczyk J., Faryna M., Litynska L.: Zirconia matrix-tungsten carbide particulate composites manufactured by hot-pressing technique. Mater Lett., 36 (1998) 70–75.
  13. 13. Kisly P.S., Prokopiv N.M., Gevorkyan E.S.: Raw Material for Composites. USSR Certificate of Invention № 1759014 V 35/12. 01.05.92.
  14. 14. Kisly P.S., Prokopiv N.M., Gevorkyan E.S.: Raw Material for Composites. USSR Certificate of Invention № 1780284 V 35/12. 08.07.92.
  15. 15. Kisly P.S., Prokopiv N.M., Gevorkyan E.S.: Raw Material for Composites. USSR Certificate of Invention № 1676220 V 35/12. 08.05.91.
  16. 16. Fang Zh.Z., Wang H., Kumar V.: Coarsening, densification, and grain growth during sintering of nano-sized powders—A perspective. Int. J. Ref. Met. Hard Mater., 62 (Part B) (2017) 110-117.
  17. 17. Tiwari D., Basu B., Biswas K.: Simulation of thermal and electric field evolution during spark plasma sintering, Ceramics International, 35 (2009) 699–708.
  18. 18. Groza J.R.: Nanosintering. Nanostr. Mater., 12 (1999) 987–992.10.1016/S0965-9773(99)00284-6
  19. 19. Groza J.R., Stanciu L.A., Kodash V.Y., Crisan M., Zaharescu M.: Electrical field effect in sintering and reaction to form aluminum titanate from binary Al2O3–TiO2 sol–gel powders. J. Am. Ceram. Soc., 2 (2005) 183–192.
  20. 20. Semchenko G., Gevorkyan E.: Consolidated nanocomposite materials with the defined properties. Advances in Science and Technology, 91 (2014) 24–31.
  21. 21. Anstis G.R., Chantikul P., Lawn B.R., Marshall D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Eur. Ceram. Soc., 64 (1981) 533.
  22. 22. Blau P.J., Budinski K.G.: Development and use of ASTM standards for wear testing. Wear, 225–229(2) (1999) 1159–1170.
DOI: https://doi.org/10.1515/adms-2017-0037 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 15 - 21
Published on: Oct 29, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 S. Lavrynenko, E. Gevorkyan, W. Kucharczyk, L. Chalko, M. Rucki, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.