Have a personal or library account? Click to login
The therapeutic agents that target ATP-sensitive potassium channels Cover

The therapeutic agents that target ATP-sensitive potassium channels

Open Access
|Mar 2016

References

  1. 1. B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland 2001, p. 814.
  2. 2. S. Choe, Potassium channel structures, Nat. Rev. Neurosci. 3 (2002) 115–121; DOI: 10.1038/nrn727.10.1038/nrn727
  3. 3. C. C. Shieh, M. Coghlan, J. P. Sullivan and M. Gopalakrishnan, Potassium channels: molecular defects, diseases, and therapeutic opportunities, Pharmacol. Rev. 52 (2000) 557–594.
  4. 4. C. A. Doupnik, N. Davidson and H. A. Lester, The inward rectifier potassium channel family, Curr. Opin. Neurobiol. 5 (1995) 268–277; DOI: 10.1016/0959-4388(95)80038-7.10.1016/0959-4388(95)80038-7
  5. 5. C. G. Nichols and A. N. Lopatin, Inward rectifier potassium channels, Annu. Rev. Physiol. 59 (1997) 171–191; DOI: 10.1146/annurev.physiol.59.1.171.10.1146/annurev.physiol.59.1.171
  6. 6. D. Bichet, F. A. Haass and L. Y. Jan, Merging functional studies with structures of inward-rectifier K(+) channels, Nat. Rev. Neurosci. 4 (2003) 957–967; DOI: 10.1038/nrn1244.10.1038/nrn1244
  7. 7. D. E. Logothetis, D. Lupyan and A. Rosenhouse-Dantsker, Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding, J. Physiol. 582 (2007) 953–965; DOI: 10.1113/jphysiol.2007.133157.10.1113/jphysiol.2007.133157
  8. 8. L. H. Xie, S. A. John, B. Ribalet and J. N. Weiss, Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): interaction with other regulatory ligands, Prog. Biophys. Mol. Biol. 94 (2007) 320–335; DOI: 10.1016/j.pbiomolbio.2006.04.001.10.1016/j.pbiomolbio.2006.04.001
  9. 9. A. Noma, ATP-regulated K+ channels in cardiac muscle, Nature305 (1983) 147–148; DOI: 10.1038/305147a0.10.1038/305147a0
  10. 10. D. L. Cook and C. N. Hales, Intracellular ATP directly blocks K+ channels in pancreatic B-cells, Nature311 (1984) 271–273; DOI: 10.1038/311271a0.10.1038/311271a0
  11. 11. A. E. Spruce, N. B. Standen and P. R. Stanfield, Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane, Nature316 (1985) 736–738; DOI: 10.1038/316736a0.10.1038/316736a0
  12. 12. S. J. Ashcroft and F. M. Ashcroft, Properties and functions of ATP-sensitive K-channels, Cell. Signal. 2 (1990) 197–214; DOI 10.1016/0898-6568(90)90048-F.10.1016/0898-6568(90)90048-F
  13. 13. N. B. Standen, J. M. Quayle, N. W. Davies, J. E. Brayden, Y. Huang and M. T. Nelson, Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle, Science245 (1989) 177–180; DOI: 10.1126/science.2501869.10.1126/science.2501869
  14. 14. L. Aguilar-Bryan and J. Bryan, Molecular biology of adenosine triphosphate-sensitive potassium channels, Endocr. Rev. 20 (1999) 101–135; DOI: 10.1210/edrv.20.2.0361.10.1210/edrv.20.2.0361
  15. 15. G. E. Billman, The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy, Pharmacol. Ther. 120 (2008) 54–70; DOI: 10.1016/j.pharmthera.2008.07.004.10.1016/j.pharmthera.2008.07.004
  16. 16. S. Isomoto and Y. Kurachi, [Molecular and biophysical aspects of potassium channels], Nihon Rinsho. (Jpn. J. Clin. Med.) 54 (1996) 660–666.
  17. 17. J. Bryan and L. Aguilar-Bryan, Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K(+) channels, Biochim. Biophys. Acta1461 (1999) 285–303; DOI: 10.1016/S0005-2736(99)00164-9.10.1016/S0005-2736(99)00164-9
  18. 18. N. Inagaki and S. Seino, ATP-sensitive potassium channels: structures, functions, and pathophysiology, Jpn. J. Physiol. 48 (1998) 397–412; DOI: 10.2170/jjphysiol.48.397.10.2170/jjphysiol.48.39710021494
  19. 19. M. Matsuo, K. Tanabe, N. Kioka, T. Amachi and K. Ueda, Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes, SUR1, SUR2A, and SUR2B, J. Biol. Chem. 275 (2000) 28757–28763; DOI: 10.1074/jbc.M004818200.10.1074/jbc.M00481820010893240
  20. 20. M. Dean, A. Rzhetsky and R. Allikmets, The human ATP-binding cassette (ABC) transporter superfamily, Genome Res. 11 (2001) 1156–1166; DOI: 10.1101/gr.184901.10.1101/gr.18490111435397
  21. 21. L. Aguilar-Bryan, J. P. Clement IV, G. Gonzalez, K. Kunjilwar, A. Babenko and J. Bryan, Toward understanding the assembly and structure of KATP channels, Physiol. Rev. 78 (1998) 227–245.10.1152/physrev.1998.78.1.2279457174
  22. 22. B. G. Gabrielsson, A. C. Karlsson, M. Lonn, L. E. Olofsson, J. M. Johansson, J. S. Torgerson, L. Sjostrom, B. Carlsson, S. Eden and L. M. Carlsson, Molecular characterization of a local sulfonylurea system in human adipose tissue, Mol. Cell. Biochem. 258 (2004) 65–71; DOI: 10.1023/B:MCBI.0000012837.11847.c8.10.1023/B:MCBI.0000012837.11847.c8
  23. 23. C. F. Higgins, ABC transporters: physiology, structure and mechanism-an overview, Res. Microbiol. 152 (2001) 205–210.
  24. 24. J. E. Walker, M. Saraste, M. J. Runswick and N. J. Gay, Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1 (1982) 945–951.10.1002/j.1460-2075.1982.tb01276.x5531406329717
  25. 25. R. Mannhold, KATP channel openers: structure-activity relationships and therapeutic potential, Med. Res. Rev. 24 (2004) 213–266; DOI: 10.1002/med.10060.10.1002/med.10060
  26. 26. J. P. Clement IV, K. Kunjilwar, G. Gonzalez, M. Schwanstecher, U. Panten, L. Aguilar-Bryan and J. Bryan, Association and stoichiometry of K(ATP) channel subunits, Neuron18 (1997) 827–838; DOI: 10.1016/S0896-6273(00)80321-9.10.1016/S0896-6273(00)80321-9
  27. 27. D. Enkvetchakul, G. Loussouarn, E. Makhina and C. G. Nichols, ATP interaction with the open state of the K(ATP) channel, Biophys. J. 80 (2001) 719–728; DOI: 10.1016/S0006-3495(01)76051-1.10.1016/S0006-3495(01)76051-1
  28. 28. M. A. Burke, R. K. Mutharasan and H. Ardehali, The sulfonylurea receptor, an atypical ATP-bin ding cassette protein, and its regulation of the KATP channel, Circ. Res. 102 (2008) 164–176; DOI: 10.1161/CIRCRESAHA.107.165324.10.1161/CIRCRESAHA.107.165324
  29. 29. F. M. Ashcroft and F. M. Gribble, Correlating structure and function in ATP-sensitive K+ channels, Trends Neurosci. 21 (1998) 288–294; DOI: 10.1016/S0166-2236(98)01225-9.10.1016/S0166-2236(98)01225-9
  30. 30. S. Seino, Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review, J. Diabetes Compl. 17 (2003) 2–5; DOI: 10.1016/S1056-8727(02)00274-X.10.1016/S1056-8727(02)00274-X
  31. 31. S. Sattiraju, S. Reyes, G. C. Kane and A. Terzic, K(ATP) channel pharmacogenomics: from bench to bedside, Clin. Pharmacol. Ther. 83 (2008) 354–357; DOI: 10.1038/sj.clpt.6100378.10.1038/sj.clpt.6100378271988817957187
  32. 32. K. Hussain and K. E. Cosgrove, From congenital hyperinsulinism to diabetes mellitus: the role of pancreatic beta-cell KATP channels, Pediatr. Diabetes6 (2005) 103–113; DOI: 10.1111/j.1399-543X.2005.00109.x.10.1111/j.1399-543X.2005.00109.x15963039
  33. 33. N. Deutsch, T. S. Klitzner, S. T. Lamp and J. N. Weiss, Activation of cardiac ATP-sensitive K+ current during hypoxia: correlation with tissue ATP levels, Am. J. Physiol. 261 (1991) H671-6.
  34. 34. Y. G. Kwak, S. K. Park, U. H. Kim, M. K. Han, J. S. Eun, K. P. Cho and S. W. Chae, Intracellular ADP-ribose inhibits ATP-sensitive K+ channels in rat ventricular myocytes, Am. J. Physiol. 271 (1996) C464-8.10.1152/ajpcell.1996.271.2.C4648769984
  35. 35. H. Yokoshiki, M. Sunagawa, T. Seki and N. Sperelakis, ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells, Am. J. Physiol. 274 (1998) C25–C37.10.1152/ajpcell.1998.274.1.C259458709
  36. 36. J. E. Brayden, Functional roles of KATP channels in vascular smooth muscle, Clin. Exp. Pharmacol. Physiol. 29 (2002) 312–316; DOI: 10.1046/j.1440-1681.2002.03650.x.10.1046/j.1440-1681.2002.03650.x
  37. 37. M. Yamada, S. Isomoto, S. Matsumoto, C. Kondo, T. Shindo, Y. Horio and Y. Kurachi, Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel, J. Physiol. 499 (1997) 715–20; DOI: 10.1113/jphysiol.1997.sp021963.10.1113/jphysiol.1997.sp021963
  38. 38. J. Roper and F. M. Ashcroft, Metabolic inhibition and low internal ATP activate K-ATP channels in rat dopaminergic substantia nigra neurones, Pflugers Arch. 430 (1995) 44–54; DOI: 10.1007/BF00373838.10.1007/BF00373838
  39. 39. I. M. Stanford and M. G. Lacey, Electrophysiological investigation of adenosine trisphosphate-sensitive potassium channels in the rat substantia nigra pars reticulata, Neuroscience74 (1996) 499–509; DOI: 10.1016/0306-4522(96)00151-0.10.1016/0306-4522(96)00151-0
  40. 40. M. L. Ashford, P. R. Boden and J. M. Treherne, Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ channels, Br. J. Pharmacol. 101 (1990) 531–540; DOI: 10.1111/j.1476-5381.1990.tb14116.x.10.1111/j.1476-5381.1990.tb14116.x
  41. 41. M. Chien, I. Morozova, S. Shi, H. Sheng, J. Chen, S. M. Gomez, G. Asamani, K. Hill, J. Nuara, M. Feder, J. Rineer, J. J. Greenberg, V. Steshenko, S. H. Park, B. Zhao, E. Teplitskaya, J. R. Edwards, S. Pampou, A. Georghiou, I. C. Chou, W. Iannuccilli, M. E. Ulz, D. H. Kim, A. Geringer-Sameth, C. Goldsberry, P. Morozov, S. G. Fischer, G. Segal, X. Qu, A. Rzhetsky, P. Zhang, E. Cayanis, P. J. De Jong, J. Ju, S. Kalachikov, H. A. Shuman and J. J. Russo, The genomic sequence of the accidental pathogen Legionella pneumophila, Science305 (2004) 1966–1968; DOI: 10.1126/science.1099776.10.1126/science.1099776
  42. 42. K. Yamada and N. Inagaki, ATP-sensitive K(+) channels in the brain: sensors of hypoxic conditions, News Physiol. Sci. 17 (2002) 127–30.
  43. 43. N. W. Davies, Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons, Nature343 (1990) 375–377; DOI: 10.1038/343375a0.10.1038/343375a0
  44. 44. J. J. Nielsen, M. Kristensen, Y. Hellsten, J. Bangsbo and C. Juel, Localization and function of ATP-sensitive potassium channels in human skeletal muscle, Am. J. Physiol. Regul. Integr. Comp. Physiol. 284 (2003) R558-R63; DOI: 10.1152/ajpregu.00303.2002.10.1152/ajpregu.00303.2002
  45. 45. S. M. Gopalakrishnan, C. Chen and M. F. Lokhandwala, Identification of alpha 1-adrenoceptor subtypes in rat renal proximal tubules, Eur. J. Pharmacol. 250 (1993) 469–472; DOI: 10.1016/0014-2999(93)90036-H.10.1016/0014-2999(93)90036-H
  46. 46. A. P. Babenko, L. Aguilar-Bryan and J. Bryan, A view of sur/KIR6.X, KATP channels, Annu. Rev. Physiol. 60 (1998) 667–687; DOI: 10.1146/annurev.physiol.60.1.667.10.1146/annurev.physiol.60.1.6679558481
  47. 47. S. Seino, ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies, Annu. Rev. Physiol. 61 (1999) 337–362; DOI: 10.1146/annurev.physiol.61.1.337.10.1146/annurev.physiol.61.1.337
  48. 48. N. Inagaki, T. Gonoi, J. P. Clement IV, N. Namba, J. Inazawa, G. Gonzalez, L. Aguilar-Bryan, S. Seino and J. Bryan, Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor, Science270 (1995) 1166–1170; DOI: 10.1126/science.270.5239.1166.10.1126/science.270.5239.1166
  49. 49. S. Isomoto, C. Kondo, M. Yamada, S. Matsumoto, O. Higashiguchi, Y. Horio, Y. Matsuzawa and Y. Kurachi, A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel, J. Biol. Chem. 271 (1996) 24321–24324; DOI: 10.1074/jbc.271.40.24321.10.1074/jbc.271.40.24321
  50. 50. P. Proks, F. Reimann, N. Green, F. Gribble and F. Ashcroft, Sulfonylurea stimulation of insulin secretion, Diabetes51 (2002) S368–S376; DOI: 10.2337/diabetes.51.2007.S368.10.2337/diabetes.51.2007.S368
  51. 51. F. M. Gribble and F. Reimann, Pharmacological modulation of K(ATP) channels, Biochem. Soc. Trans. 30 (2002) 333–339; DOI: 10.1042/bst0300333.10.1042/bst0300333
  52. 52. T. Hamaguchi, T. Hirose, H. Asakawa, Y. Itoh, K. Kamado, K. Tokunaga, K. Tomita, H. Masuda, N. Watanabe and M. Namba, Efficacy of glimepiride in type 2 diabetic patients treated with glibenclamide, Diabetes Res. Clin. Pract. 66 (2004) S129–S132; DOI: 10.1016/j.diabres.2003.12.012.10.1016/j.diabres.2003.12.012
  53. 53. N. C. Sturgess, M. L. Ashford, D. L. Cook and C. N. Hales, The sulphonylurea receptor may be an ATP-sensitive potassium channel, Lancet326 (1985) 474–475; DOI: 10.1016/S0140-6736(85)90403-9.10.1016/S0140-6736(85)90403-9
  54. 54. F. M. Gribble, S. J. Tucker and F. M. Ashcroft, The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation, J. Physiol. 504 (1997) 35–45; DOI: 10.1111/j.1469-7793.1997.00035.x.10.1111/j.1469-7793.1997.00035.x11599339350615
  55. 55. F. M. Gribble and F. M. Ashcroft, Differential sensitivity of beta-cell and extrapancreatic K(ATP) channels to gliclazide, Diabetologia42 (1999) 845–848; DOI: 10.1007/s001250051236.10.1007/s00125005123610440127
  56. 56. F. Reimann, P. Proks and F. M. Ashcroft, Effects of mitiglinide (S 21403) on Kir6.2/SUR1, Kir6.2/SUR2A and Kir6.2/SUR2B types of ATP-sensitive potassium channel, Br. J. Pharmacol. 132 (2001) 1542–1548; DOI: 10.1038/sj.bjp.0703962.10.1038/sj.bjp.0703962157269711264248
  57. 57. Y. Sunaga, T. Gonoi, T. Shibasaki, K. Ichikawa, H. Kusama, H. Yano and S. Seino, The effects of mitiglinide (KAD-1229), a new anti-diabetic drug, on ATP-sensitive K+ channels and insulin secretion: comparison with the sulfonylureas and nateglinide, Eur. J. Pharmacol. 431 (2001) 119–125; DOI: 10.1016/S0014-2999(01)01412-1.10.1016/S0014-2999(01)01412-1
  58. 58. F. M. Ashcroft and F. M. Gribble, Tissue-specific effects of sulfonylureas: lessons from studies of cloned K(ATP) channels, J. Diabetes Compl. 14 (2000) 192–196; DOI: 10.1016/S1056-8727(00)00081-7.10.1016/S1056-8727(00)00081-7
  59. 59. S. Hu, S. Wang and B. E. Dunning, Tissue selectivity of antidiabetic agent nateglinide: study on cardiovascular and beta-cell K(ATP) channels, J. Pharmacol. Exp. Ther. 291 (1999) 1372–1379.
  60. 60. A. Melander, Kinetics-effect relations of insulin-releasing drugs in patients with type 2 diabetes: brief overview, Diabetes53 (2004) S151–S155; DOI: 10.2337/diabetes.53.suppl_3.S151.10.2337/diabetes.53.suppl_3.S151
  61. 61. R. I. Shorr, W. A. Ray, J. R. Daugherty and M. R. Griffin, Individual sulfonylureas and serious hypoglycemia in older people, J. Am. Geriatr. Soc. 44 (1996) 751–755; DOI: 10.1111/j.1532-5415.1996.tb03729.x.10.1111/j.1532-5415.1996.tb03729.x
  62. 62. A. Jonsson, T. Rydberg, G. Ekberg, B. Hallengren and A. Melander, Slow elimination of glyburide in NIDDM subjects, Diabetes Care17 (1994) 142–145; DOI: 10.2337/diacare.17.2.142.10.2337/diacare.17.2.142
  63. 63. A. Holstein, A. Plaschke and E. H. Egberts, Lower incidence of severe hypoglycaemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide, Diabetes Metab. Res. Rev. 17 (2001) 467–473; DOI: 10.1002/dmrr.235.10.1002/dmrr.235
  64. 64. A. Basit, M. Riaz and A. Fawwad, Glimepiride: evidence-based facts, trends, and observations, Vasc. Health Risk Manag. 8 (2012) 463–472; DOI: 10.2147/HIV.S33194.
  65. 65. J. A. Hirst, A. J. Farmer, A. Dyar, T. W. Lung and R. J. Stevens, Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis, Diabetologia56 (2013) 973–984; DOI: 10.1007/s00125-013-2856-6.10.1007/s00125-013-2856-6
  66. 66. K. Kaku, Y. Inoue and T. Kaneko, Extrapancreatic effects of sulfonylurea drugs, Diabetes Res. Clin. Pract. 28 (1995) S105–S108; DOI: 10.1016/0168-8227(95)01078-R.10.1016/0168-8227(95)01078-R
  67. 67. A. Terzic, A. Jahangir and Y. Kurachi, Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs, Am. J. Physiol. 269 (1995) C525–C545.10.1152/ajpcell.1995.269.3.C5257573382
  68. 68. J. P. Arena and R. S. Kass, Activation of ATP-sensitive K channels in heart cells by pinacidil: dependence on ATP, Am. J. Physiol. 257 (1989) H2092–2096.
  69. 69. G. Edwards, T. Ibbotson and A. H. Weston, Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier, Br. J. Pharmacol. 110 (1993) 1037–1048; DOI: 10.1111/j.1476-5381.1993.tb13918.x.10.1111/j.1476-5381.1993.tb13918.x21758028298792
  70. 70. M. Schwanstecher, C. Sieverding, H. Dorschner, I. Gross, L. Aguilar-Bryan, C. Schwanstecher and J. Bryan, Potassium channel openers require ATP to bind to and act through sulfonylurea receptors, EMBO J. 17 (1998) 5529–5535; DOI: 10.1093/emboj/17.19.5529.10.1093/emboj/17.19.5529
  71. 71. S. Shyng, T. Ferrigni and C. G. Nichols, Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor, J. Gen. Physiol. 110 (1997) 643–654; DOI: 10.1085/jgp.110.6.643.10.1085/jgp.110.6.643
  72. 72. F. M. Gribble, F. Reimann, R. Ashfield and F. M. Ashcroft, Nucleotide modulation of pinacidil stimulation of the cloned K(ATP) channel Kir6.2/SUR2A, Mol. Pharmacol. 57 (2000) 1256–1261.
  73. 73. C. Moreau, A. L. Prost, R. Derand and M. Vivaudou, SUR, ABC proteins targeted by KATP channel openers, J. Mol. Cell Cardiol. 38 (2005) 951–963; DOI: 10.1016/j.yjmcc.2004.11.030.10.1016/j.yjmcc.2004.11.030
  74. 74. A. P. Babenko, G. Gonzalez and J. Bryan, Pharmaco-topology of sulfonylurea receptors. Separate domains of the regulatory subunits of K(ATP) channel isoforms are required for selective interaction with K(+) channel openers, J. Biol. Chem. 275 (2000) 717–720; DOI: 10.1074/jbc.275.2.717.10.1074/jbc.275.2.717
  75. 75. I. Uhde, A. Toman, I. Gross, C. Schwanstecher and M. Schwanstecher, Identification of the potassium channel opener site on sulfonylurea receptors, J. Biol. Chem. 274 (1999) 28079–28082; DOI: 10.1074/jbc.274.40.28079.10.1074/jbc.274.40.28079
  76. 76. G. Edwards and A. H. Weston, Potassium channel openers and vascular smooth muscle relaxation, Pharmacol. Ther. 48 (1990) 237–258; DOI: 10.1016/0163-7258(90)90082-D.10.1016/0163-7258(90)90082-D
  77. 77. A. H. Weston, J. Longmore, D. T. Newgreen, G. Edwards, K. M. Bray and S. Duty, The potassium channel openers: a new class of vasorelaxants, Blood Vessels. 27 (1990) 306–313; DOI 10.1159/000158823.
  78. 78. J. C. Clapham, In Vivo Vascular Effects of Potassium Channel Activation in Isolated Blood Vessels, in Potassium Channels and Their Modulators (Ed. J. M. Evans), 1st ed., Taylor & Francis, London 1996, pp. 448.
  79. 79. M. Burian, M. Piske, D. Petkovic and V. Mitrovic, Lack of anti-ischemic efficacy of the potassium channel opener bimakalim in patients with stable angina pectoris, Cardiovasc. Drugs Ther. 18 (2004) 37–46; DOI: 10.1023/B:CARD.0000025754.08942.03.10.1023/B:CARD.0000025754.08942.03
  80. 80. H. Ueda, Y. Nakayama, K. Tsumura, K. Yoshimaru, T. Hayashi and J. Yoshikawa, Intravenous nicorandil can reduce the occurrence of ventricular fibrillation and QT dispersion in patients with successful coronary angioplasty in acute myocardial infarction, Can. J. Cardiol. 20 (2004) 625–629.
  81. 81. I. S. Group, Effect of nicorandil on coronary events in patients with stable angina: the impact of nicorandil in angina (IONA) randomised trial, Lancet359 (2002) 1269–1275; DOI: 10.1016/S0140-6736(02)08265-X.10.1016/S0140-6736(02)08265-X
  82. 82. D. J. Milligan and A. M. Fields, Levosimendan: calcium sensitizer and inodilator, Anesthesiol. Clin. 28 (2010) 753–760; DOI: 10.1016/j.anclin.2010.08.003.10.1016/j.anclin.2010.08.003
  83. 83. F. Follath, J. G. F. Cleland, H. Just, J. G. Y. Papp, H. Scholz, K. Peuhkurinen, V. P. Harjola, V. Mitrovic, M. Abdalla, E.-P. Sandell and L. Lehtonen, for the Steering Committee and Investigators of the Levosimendan Infusion versus Dobutamine (LIDO) Study, Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial, Lancet360 (2002) 196–202; DOI: 10.1016/S0140-6736(02)09455-2.10.1016/S0140-6736(02)09455-2
  84. 84. V. S. Moiseyev, P. Poder, N. Andrejevs, M. Y. Ruda, A. P. Golikov, L. B. Lazebnik, Z. D. Kobalava, L. A. Lehtonen, T. Laine, M. S. Nieminen, K. I. Lie and RUSSLAN Study Investigators, Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSS-LAN), Eur. Heart J. 23 (2002) 1422–1432.10.1053/euhj.2001.315812208222
DOI: https://doi.org/10.1515/acph-2016-0006 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 23 - 34
Accepted on: Sep 15, 2015
Published on: Mar 7, 2016
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2016 Hussein N. Rubaiy, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.