References
- Rines AK, Sharabi K, Tavares CDJ, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov. 2016; 15:786–804.
- Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008; 9:367–77.
- Akter S, Rahman MM, Abe SK, Sultana P. Prevalence of diabetes and prediabetes and their risk factors among Bangladeshi adults: a nationwide survey. Bull World Health Organ. 2014; 92:204–13A.
- Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017; 13:36–49.
- Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006; 444(7121):840–6.
- Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005; 26:19–39.
- Shah A, Mehta N, Reilly MP. Adipose inflammation, insulin resistance, and cardiovascular disease. JPEN J Parenter Enteral Nutr. 2008; 32:638–44.
- Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016; 126:12–22.
- Esteve E, Ricart W, Fernández-Real JM. Adipocytokines and insulin resistance: the possible role of lipocalin-2, retinol binding protein-4, and adiponectin. Diabetes Care. 2009; 32(Suppl 2):S362–7.
- Hirabara SM, Gorjão R, Vinolo MA, Rodrigues AC, Nachbar RT, Curi R. Molecular targets related to inflammation and insulin resistance and potential interventions. J Biomed Biotechnol. 2012; 2012:379024. doi: 10.1155/2012/379024
- de Luca C, Olefsky JM. Inflammation and Insulin Resistance. FEBS Lett. 2008; 582:97–105.
- Chen L, Chen R, Wang H, Liang F. Mechanisms linking inflammation to insulin resistance. Int J Endocrinol. 2015; 2015:508409. doi: 10.1155/2015/508409
- Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem. 2009; 42:1331–46.
- Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006; 13:816–25.
- Rhyasen GW, Starczynowski DT. IRAK signalling in cancer. Br J Cancer. 2015; 112:232–7.
- Winzell MS, Ahrén B. The high-fat diet–fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes. 2004; 53(Suppl 3):S215–9.
- Wang C-Y, Liao JK. A mouse model of diet-induced obesity and insulin resistance. In: Weichhart T, editor. mTOR. Methods in molecular biology (methods and protocols), vol. 821. Totowa, NJ: Humana Press; 2012, p. 421–33.
- Srinivasan K, Patole PS, Kaul CL, Ramarao P. Reversal of glucose intolerance by by pioglitazone in high fat diet-fed rats. Methods Find Exp Clin Pharmacol. 2004; 26:327–33.
- Yadav H, Jain S, Yadav M, Sinha PR, Prasad GBKS, Marotta F. Epigenomic derangement of hepatic glucose metabolism by feeding of high fructose diet and its prevention by Rosiglitazone in rats. Dig Liver Dis. 2009; 41:500–8.
- Li Z, Younger K, Gartenhaus R, Joseph AM, Hu F, Baer MR, et al. Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies. J Clin Invest. 2015; 125:1081–97.
- Mohammadi GA, Danesh B, Fallah H, Rahemi S. The effect of co-administration of Pioglitazone and simvastatin on insulin resistance parameters and PPAR.γ expression in insulin-resistant rats. J Kerman Univ Med Sci. 2017; 24:16–27.
- Mohammadi A, Fallah H, Gholamhosseinian A. Antihyperglycemic effect of Rosa damascena is mediated by PPAR.γ gene expression in animal model of insulin resistance. Iran J Pharm Res. 2017; 16:1080–8.
- Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A. Assessment of insulin sensitivity/resistance. Indian J Endocrinol Metab. 2015; 19:160–4.
- Cariou B, Charbonnel B, Staels B. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends Endocrinol Metab. 2012; 23:205–15.
- Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B. Management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy. Update regarding the thiazolidinediones. Diabetologia. 2008; 51:8–11.
- Sun X-J, Kim SP, Zhang D, Sun H, Cao Q, Lu X, et al. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing sensitivity in skeletal muscle. J Biol Chem. 2017; 292:12339–50.
- Rajaie A, Allahyari M, Nazari-Robati M, Fallah H. Inhibition of interleukin-1 receptor-associated kinases 1/4, increases gene expression and serum level of adiponectin in mouse model of insulin resistance. Int J Mol Cell Med. 2018; 7: 185–92.
- Geagea AG, Mallat S, Matar CF, Zerbe R, Filfili E, Francis M, et al. Adiponectin and inflammation in health and disease: an update. Open Med J. 2018; 5:20–32.
- Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017; 2:e17023. doi: 10.1038/sigtrans.2017.23
- Francken AB, Schouten PC, Bleiker EMA, Linn SC, Rutgers EJTh. Breast cancer in women at high risk: the role of rapid genetic testing for BRCA1 and -2 mutations and the consequences for treatment strategies. Breast. 2013; 22:561–8.
- Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2002; 87:2784–91
- Ahmad R, Shihab PK, Thomas R, Alghanim M, Hasan A, Sindhu S, Behbehani K. Increased expression of the interleukin-1 receptor-associated kinase (IRAK)-1 is associated with adipose tissue inflammatory state in obesity. Diabetol Metab Syndr. 2015; 7:71. doi: 10.1186/s13098-015-0067-7