References
- Carson PE, Flanagan CL, Ickes C, Alving AS. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science. 1956; 124(3220):484–5.
- Efferth T, Fabry U, Glatte P, Osieka R. Increased induction of apoptosis in mononuclear cells of a glucose-6-phosphate dehydrogenase deficient patient. J Mol Med (Berl). 1995; 73:47–9.
- Zhang J, Cao M, Yang W, Sun F, Xu C, Yin L, et al. Inhibition of glucose-6-phosphate dehydrogenase could enhance 1, 4-benzoquinone-induced oxidative damage in K562 cells. Oxid Med Cell Longev. 2016; 2016:3912515. doi: 10.1155/2016/3912515
- McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969; 244:6049–55.
- Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008; 371(9606):64–74.
- Beutler E. Glucose-6-phosphate dehydrogenase deficiency: a historical perspective. Blood. 2008; 111:16–24.
- Valencia SH, Ocampo ID, Arce-Plata MI, Recht J, Arévalo-Herrera M. Glucose-6-phosphate dehydrogenase deficiency prevalence and genetic variants in malaria endemic areas of Colombia. Malar J. 2016; 15:291. doi: 10.1186/s12936-016-1343-1
- WHO Scientific Group on the Standardization of Procedures for the Study of Glucose-6-Phosphate Dehydrogenase and World Health Organization. Standardization of procedures for the study of glucose-6-phosphate dehydrogenase: report of a WHO Scientific Group [meeting held in Geneva from 5 to 10 December 1966] [Internet] Geneva: World Health Organization; 1967 [cited 2020 Mar 24]. Available from:
https://apps.who.int/iris/handle/10665/40660 - Beutler E, Yoshida A. Genetic variation of glucose-6-phosphate dehydrogenase: a catalog and future prospects. Medicine (Baltimore). 1988; 67:311–34.
- Singh H. Glucose-6-phosphate dehydrogenase deficiency: a preventable cause of mental retardation. Br Med J (Clin Res Ed). 1986; 292(6517):397–8.
- Hon A, Balakrishnan S, Ahmad Z. Hyperbilirubinemia and erythocytic glucose 6 phosphate dehydrogenase deficiency in Malaysian children. Med J Malaysia. 1989; 44:30–4.
- Sulaiman AM, Saghir SAM, Al-Hassan FM, Yusoff NM, Zaki A-HA. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in a university community in Malaysia. Trop J Pharm Res. 2013; 12:363–7.
- Ainoon O, Yu Y, Muhriz AA, Boo N, Cheong S, Hamidah N. Glucose-6-phosphate dehydrogenase (G6PD) variants in Malaysian Malays. Hum Mutat. 2003; 21:1. doi: 10.1002/humu.9103
- Yusoff NM, Shirakawa T, Nishiyama K, Ee CK, Isa MN, Matsuo M. G6PD Viangchan and G6PD Mediterranean are the main variants in G6PD deficiency in the Malay population of Malaysia. Southeast Asian J Trop Med Public Health. 2004; 34(Suppl. 3):135–7.
- Poon M-C, Hall K, Scott CW, Prehal JT. G6PD Viangchan: a new glucose 6-phosphate dehydrogenase variant from Laos. Hum Genet. 1988; 78:98–9.
- World Health Organization Working Group. Glucose-6-phosphate dehydrogenase deficiency. WHO Bulletin OMS. 1989; 67:601–11. Available from:
https://apps.who.int/iris/handle/10665/47019 - Gómez-Manzo S, Terrón-Hernández J, De la Mora-De la Mora I, González-Valdez A, Marcial-Quino J, García-Torres I, et al. The stability of G6PD is affected by mutations with different clinical phenotypes. Int J Mol Sci. 2014; 15:21179–201.
- Roos D, van Zwieten R, Wijnen JT, Gómez-Gallego F, de Boer M, Stevens D, et al. Molecular basis and enzymatic properties of glucose 6-phosphate dehydrogenase Volendam, leading to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. Blood. 1999; 94:2955–62.
- Huang Y, Choi MY, Au SWN, Au DMY, Lam VMS, Engel PC. Purification and detailed study of two clinically different human glucose 6-phosphate dehydrogenase variants, G6PDPlymouth and G6PDMahidol: evidence for defective protein folding as the basis of disease. Mol Genet Metabol. 2008; 93:44–53.
- Wang X-T, Lam VM, Engel PC. Functional properties of two mutants of human glucose 6-phosphate dehydrogenase, R393G and R393H, corresponding to the clinical variants G6PD Wisconsin and Nashville. Biochim Biophys Acta. 2006; 1762:767–74.
- Wang X-T, Engel PC. Clinical mutants of human glucose 6-phosphate dehydrogenase: impairment of NADP+ binding affects both folding and stability. Biochim Biophys Acta. 2009; 1792:804–9.
- Boonyuen U, Chamchoy K, Swangsri T, Saralamba N, Day NP, Imwong M. Detailed functional analysis of two clinical glucose-6-phosphate dehydrogenase (G6PD) variants, G6PDViangchan and G6PDViangchan+Mahidol: decreased stability and catalytic efficiency contribute to the clinical phenotype. Mol Genet Metabol. 2016; 118:84–91.
- Gómez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, Serrano-Posada H, González-Valdez A, Martínez-Rosas V, et al. Functional and biochemical characterization of three recombinant human glucose-6-phosphate dehydrogenase mutants: Zacatecas, Vanua-Lava and Viangchan. Int J Mol Sci. 2016; 17:787. doi: 10.3390/ijms17050787
- Boonyuen U, Chamchoy K, Swangsri T, Junkree T, Day NPJ, White NJ, Imwong M. A trade off between catalytic activity and protein stability determines the clinical manifestations of glucose-6-phosphate dehydrogenase (G6PD) deficiency. Int J Biol Macromol. 2017; 104(Pt A):145–56.
- Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25:1605–12.
- Scouras AD, Daggett V. The Dynameomics rotamer library: amino acid side chain conformations and dynamics from comprehensive molecular dynamics simulations in water. Protein Sci. 2011; 20:341–52.
- Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008; 4(3):435–47.
- Rizvi SM, Shakil S, Haneef M. A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI J. 2013; 12:831–57.
- Kotaka M, Gover S, Vandeputte-Rutten L, Au SW, Lam VM, Adams MJ. Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr. 2005; 61:495–504.
- Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011; 51:2778–86.
- Rao ST, Rossmann MG. Comparison of super-secondary structures in proteins. J Mol Biol. 1973; 76:241–56.
- Hanukoglu I. Proteopedia: Rossmann fold: a beta-alpha-beta fold at dinucleotide binding sites. Biochem Mol Biol Educ. 2015; 43:206–9.
- Gómez-Manzo S, Terrón-Hernández J, de la Mora-de la Mora I, García-Torres I, López-Velázquez G, Reyes-Vivas H, Oria-Hernández J. Cloning, expression, purification and characterization of His-Tagged human glucose-6-phosphate dehydrogenase: a simplified method for protein yield. Protein J. 2013; 32:585–92.
- Minucci A, Giardina B, Zuppi C, Capoluongo E. Glucose-6-phosphate dehydrogenase laboratory assay: how, when, and why? IUBMB Life. 2009; 61:27–34.
- von Seidlein L, Auburn S, Espino F, Shanks D, Cheng Q, McCarthy J, et al. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar J. 2013; 12:112. doi: 10.1186/1475-2875-12-112
- Blacker TS, Duchen MR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med. 2016; 100:53–65.