Figure 1

Figure 2

Figure 3

Figure 4
![Three-dimensional structure of glucose-6-phosphate dehydrogenase (G6PD)Viangchan obtained through mutation in silico. The wild-type G6PD structure (PDBID: 2HB9) was retrieved from the RCSB Protein Data Bank and subjected to mutation in silico using the UCSF Chimera Rotamer tool [25]. Valine 291 was changed to methionine (in red) (G6PDViangchan). The side chain rotamer of the mutated residue was selected based on the Dynameomics rotamers library [26]. The energy minimization was performed on the G6PDViangchan variant (V291M) using the Gromacs simulation package (version 4.6.7) [27]. The molecular docking was performed using AutoDock (version 4.2) [28]. The yellow region represents the structural nicotinamide adenine dinucleotide phosphate (NADP+) binding site and green region represents substrate binding site.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647067f983f1392090d68d7d/j_abm-2020-0023_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFF3SZNPI%2F20260128%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260128T004040Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEJT%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJHMEUCIH%2Fn4E%2FNMtvTQ%2BU10I4oqjvUieDitY%2F%2BJiY%2FJwj%2Fc%2BK9AiEA575q1qRjXUo%2BdQJOtR%2FTYQIcchYBFXFs%2F4OM%2Fz84T%2F4qvAUIXRACGgw5NjMxMzQyODk5NDAiDEt3%2BU5BLggODLjgiyqZBTA9qcDK7QMHEiP1M7H5VKH4Mkwn9UZB3sFVw0BhJh%2BlAx8eGfaBnaY6hzNn12SIEpiU95m7Pa1nnUsNENIKqe9ORlSqHwXHoO2JqbeBFMrqbgPhLzm2s1It7QbOj%2BDwCCkdQAu0kCj%2BvnmunG9kwFBoTUlCLjN8hEu%2F%2FzmqUdxvh5pDzIfVpHHg%2Bq1jDwUQZ%2BjKY4wWLaFkPCQuDK6RwF66Vj%2BdtmOWigerD10ZW4sLYTOay0PJhKtbgkUczcHERrr3fe%2Fpy9lMe7bcLERw8KBdcz18Y6kETPaHfEzsg7iDYIntrAiGz1VmyOp7GOvP1yVjC5XLZ683ra4EvxFOP6apx%2BcBkqFCQQmJyHXq9XgRYaQi8HKn41avnliDVT%2FYQxzU1bOogkoYK6XxZbVeapT8o8pupeo8W%2BMocRXF7uhhwCtId%2FIkOqbK3yNN6ziZ3MtEmRYXFTZ65EUHblAyhsoJlDsO588gN57p0UQ0YjV7eWSKsi9dJxMNVnjHBOzZIkVwalb5hhnC9ZAGIcsfQldcVo907zOLwY%2BhQVT8tchDS1LiPcTiyBCAfccmiR0XdU8G%2F4xcYJKb6H2hfLHrBpfDAHfUmQAAJnmVk5ui5Wp%2BOaymShR6dMuVl9k5LWUmOtsaTb5u%2BQ8W4%2BR2L5aexwXaPq6g%2FyI2YbrzlG1Uv8ZaIo55oF5drnL%2BZ%2FRnQMuTyTrvMRO7gZyE61Y47CF3ULikSKS2jls10819AJJBFFSq0hIytYPTtc7dxZN457XjFALcdSG1zrFthFm8JB21aNk5jnWyxVgDitEHWRl8dE55n133aGC2G9fxTt3NngR4i%2Fwpw3kH9%2BDIvg3Q1F3GPPYGUuijwPFgam5%2FKgbvsFWf%2Fk%2BVmD1%2Bn%2F37ML6n5MsGOrEBCo%2FKH4UL6T9mS5l5GKuNF7Bwl%2F%2F7BuwjdnU%2B%2Fm%2BsTTiiGcgH4gsf2CcYdALvONpp5Z86Gth20IZDlqgr6renhEwJqlVDE%2FSs6GujxaKVRZ9gg%2FOxA%2Bkbt0B5xpI1jv7TT1v9h2Qn%2FPwectI3rjoGqv3R%2FZuDCzfSGh5i%2FSzSGiTRd99wglVB4k4%2B2CgYstcf1yuKDRFqDWSU0eADWpO%2B17NaSWU79JNMwvYtG%2FpKa00x&X-Amz-Signature=1ecf39a4a21c5b84877ff8cb84e9e65585d21a4fac5ac7f8af63ff31f0edc3e6&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Specific enzyme activity (U/mg) of heterologous glucose-6-phosphate dehydrogenase
| Variant | Roos et al. [18] | Wang et al. [20] | Huang et al. [19] | Wang and Engel [21] | Gómez-Manzo et al. [33] | Gómez-Manzo et al. [17] | Gómez-Manzo et al. [23] | Boonyuen et al. [22] |
|---|---|---|---|---|---|---|---|---|
| Wild-type G6PD | 210 | 180 | 182 | 210 | 224 | 224 | 230 | 228 |
| Amsterdam | – | – | – | 95 | – | – | – | – |
| Volendam | 36 | – | – | – | – | – | – | – |
| Wisconsin | – | – | – | – | 178 | – | – | – |
| Nashville | – | 130 | – | – | – | 103 | – | – |
| Yucatan | – | – | – | – | – | 132 | – | – |
| Valladolid | – | – | – | – | – | 92 | – | – |
| Mexico City | – | – | – | – | – | 175 | – | – |
| Mahidol | – | – | 177 | – | – | – | – | 141 |
| Fukaya | – | 175 | – | – | – | – | – | – |
| Champinas | – | 160 | – | – | – | – | – | – |
| Plymouth | – | – | 187 | – | – | – | – | – |
| Viangchan | – | – | – | – | – | – | 228 | 107 |
| Zacatecas | – | – | – | – | – | – | 58 | – |
| Vanua-Lava | – | – | – | – | – | – | 182 | – |