Figure 1

Figure 2

Figure 3

Figure 4
![Three-dimensional structure of glucose-6-phosphate dehydrogenase (G6PD)Viangchan obtained through mutation in silico. The wild-type G6PD structure (PDBID: 2HB9) was retrieved from the RCSB Protein Data Bank and subjected to mutation in silico using the UCSF Chimera Rotamer tool [25]. Valine 291 was changed to methionine (in red) (G6PDViangchan). The side chain rotamer of the mutated residue was selected based on the Dynameomics rotamers library [26]. The energy minimization was performed on the G6PDViangchan variant (V291M) using the Gromacs simulation package (version 4.6.7) [27]. The molecular docking was performed using AutoDock (version 4.2) [28]. The yellow region represents the structural nicotinamide adenine dinucleotide phosphate (NADP+) binding site and green region represents substrate binding site.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647067f983f1392090d68d7d/j_abm-2020-0023_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKG2EA3BVD%2F20260127%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260127T231330Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEJb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJHMEUCIEK4uVx1bslmUvYJLfh0wDgsT208UWnS8%2FcTzSJJFZZAAiEAzjjqN%2F30wX9fIhTE5dJiYX9g2Hua2lTSL1FHb%2F%2BGTbAqvQUIXxACGgw5NjMxMzQyODk5NDAiDPEo2k78i478vwM0HiqaBScMmP6fa4OaP34dgightF5aNWmlLPEEzsjyVCZEy2JTsj57IZX1%2BjLpKeZOUNQbCvmZ3S6qrgRylVD17yQnw9LzEF6ys%2FRyydYm%2F24tcW9k7uX7lv9TWJfV9qF2m8V9OeS0e6lndYEGN5EoFhx%2Bh60SHf%2F29EAtN1lIccHTwXXx0K20B%2BBzC4zJLns0Wu7GPIumiFimtlpkQMHPgvEXI%2Fm764f12YPzO3GdtdwRXBb4ADkH18YRhyQ5Yd6NcXD%2B%2F6Kdfyc4SZPk6otW%2Bh5%2BNKXmd%2BQUAFRMMheP65MvAYZwWh7rEbFzTIxUqiDJp7Rcrrt4%2B1liefhlBj78b9zOh0eJLIMpPWFp9%2B0r07yGEzBZVUQqrP678vFGUydDEf3irN1YaHBSmq5mOUzYYIzvHNP44lNe%2FCmAqwym5dEOk5rHFPkqVtAlGJdXDLLmVmEPXwXWkFTFu1Mpb7eC3jV%2F5FE6gqr%2FZAhMNR9c21qq%2FvtjmqHHWiKIE%2FppUfjNhZ1Ja45%2B6A4GvRwXeKTzEiQKd2xeK2uEIQHlHj410sQrpiKHek9XCsw149mmbw8n3kIQl10xg3a2p6s5s7w4lKBSaL9PCtvpR564yO%2Fh3zqvRoXTfZZjh1mJI2oni2J4QwvWJL4fxOGF6wKh3HG4qUgkvgEVEcLiPu6uTN65S0rT07CZOQ%2BvvtYMiPFdT%2BdA3Dx8ohmVe2OSaNsFLDBgt5ZQAYgR7ut9BdH66SfXnoKv03bkqWlsXt4GSTY210NzR5Ku%2Bl8FYE%2BJGi4CoAhPM0b2rmRYs2SiJJbjwunTAR7S8VlnFAfc9ajNY7E5qRK1O1Hz2Z1XFjcfPHLMifUiidQMF2dxU8Sl9egriz67vCGbFyJ5wRYvNZMOhmRs1TDF6uTLBjqxAZF6j%2B8RVRqAJzxKNf4eCkEyyJJ279uHylxdqzWoUZgZlyno2ld8%2FDxebiXgHIB0lSyLjiH13FGUlHxKPMcadi7hF4ujAJzy7f9gt2tF879%2F22uymnGybnutsL9IChcto8PTCBw6IJ1JYtEzlMPZL9NxexMqbuAw%2Bz7LZLDVhnP1W41VO5ssGb5gJvWp7whhay1OS8i2Alq0efLINvX4ZtFh1jMx6zaxkOh%2FNT2JWepXFg%3D%3D&X-Amz-Signature=8c2c89fafa9317ebe73216ab37eae959ee30a8fe51fad9fd6a25f1ced4e04f4a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Specific enzyme activity (U/mg) of heterologous glucose-6-phosphate dehydrogenase
| Variant | Roos et al. [18] | Wang et al. [20] | Huang et al. [19] | Wang and Engel [21] | Gómez-Manzo et al. [33] | Gómez-Manzo et al. [17] | Gómez-Manzo et al. [23] | Boonyuen et al. [22] |
|---|---|---|---|---|---|---|---|---|
| Wild-type G6PD | 210 | 180 | 182 | 210 | 224 | 224 | 230 | 228 |
| Amsterdam | – | – | – | 95 | – | – | – | – |
| Volendam | 36 | – | – | – | – | – | – | – |
| Wisconsin | – | – | – | – | 178 | – | – | – |
| Nashville | – | 130 | – | – | – | 103 | – | – |
| Yucatan | – | – | – | – | – | 132 | – | – |
| Valladolid | – | – | – | – | – | 92 | – | – |
| Mexico City | – | – | – | – | – | 175 | – | – |
| Mahidol | – | – | 177 | – | – | – | – | 141 |
| Fukaya | – | 175 | – | – | – | – | – | – |
| Champinas | – | 160 | – | – | – | – | – | – |
| Plymouth | – | – | 187 | – | – | – | – | – |
| Viangchan | – | – | – | – | – | – | 228 | 107 |
| Zacatecas | – | – | – | – | – | – | 58 | – |
| Vanua-Lava | – | – | – | – | – | – | 182 | – |