Figure 1

Figure 2

Figure 3

Figure 4
![Three-dimensional structure of glucose-6-phosphate dehydrogenase (G6PD)Viangchan obtained through mutation in silico. The wild-type G6PD structure (PDBID: 2HB9) was retrieved from the RCSB Protein Data Bank and subjected to mutation in silico using the UCSF Chimera Rotamer tool [25]. Valine 291 was changed to methionine (in red) (G6PDViangchan). The side chain rotamer of the mutated residue was selected based on the Dynameomics rotamers library [26]. The energy minimization was performed on the G6PDViangchan variant (V291M) using the Gromacs simulation package (version 4.6.7) [27]. The molecular docking was performed using AutoDock (version 4.2) [28]. The yellow region represents the structural nicotinamide adenine dinucleotide phosphate (NADP+) binding site and green region represents substrate binding site.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647067f983f1392090d68d7d/j_abm-2020-0023_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKA5RA4DHX%2F20251210%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251210T113635Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEAgaDGV1LWNlbnRyYWwtMSJHMEUCIQDUHJ9g1UYjkQDaOck0uFYvEYElDJ1zr0RMZuDMDvcubQIgHpuTw9iW%2B0kBeHd0Gy%2FHzd97Qvpv5JuMuPFykKfhCDAqxQUI0f%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARACGgw5NjMxMzQyODk5NDAiDGVJnLmWOpWIiCu6VCqZBWwdtv3k9gGqrp7O0rI4%2BRZs%2FTNPP4GrrOlA2LfaOu5egUfKaAee%2BFwzm%2FJYRWui%2F4EE8oaU%2FI6ZWUjJqXqOd1SigGNtdadSTzJF0vpNXqNMOTdm07GcvbAmJTwrmDQ3kHGOy56a9q7w%2BbR%2BLCqvvh61LP7bjI95TMYSbKwrhB3mfV0p8LjbmEACYw2rNTdXTqNjUloq0nitYI%2BFS4P72zzStFOimTiRJJPuiXDA%2BoQxyC%2BDyluTZqbcwsj2pPWooaoedXu0QBMnUD2ajtZMYnx%2F%2FvxYsnyrW2QUoNeOSBc2plMs%2F6S1dUdZZaip9kH1ujSL44ZD11NIWuENlT8k5ueZyO%2BSD6w9FttklNpy7tt00RxSlJQ%2FEKiHEL3oy6Tq2OtELrzxPIu9%2FSAZhQukJTBfHHv08yP%2F%2BeQStdx7JkDKjA9zM6Va%2B5mL%2B1256BehuccWZvm740EzjaxkdocIssvMaaWhNpqHSu7tV7cBHhRBSCj9o1CScfbl5vCBhBodCltoUa8HSK6lJUyY9PgyWfNC02NEiincAtFMmdw69ng7yxi4yZTjQ9mImMIITyNtJtOeF7V68culm8wCddB4JNl%2BY%2F4paF%2Bt7dykAMbTTR0L6BoF0rSy8R8dSfYfHyFlOJSjg9pg6IhRgA3Jg%2FNKWgbYIm3ad9ZFQH8IzFClrkqnZpqOLt5R8Eria%2FmzSqDjXIz7Aq8nOCcFb7OitkO7cKeX0G207tBULaKhIAQk7v6paWXtArC6%2FlM%2BUC0kqgrOnQOQ74Nfgc7XzJatc%2Bzyxdh4Zg6EE156x4nQbmD%2BLDq54PpoelJRC6aKaRDjCoek2C7R%2FHrbBxtsoANw1xa%2FFFjhZZ%2FSZM1G5fGvT%2FTYo1gZsDaKeBKnypNzMLfM5MkGOrEBVnCODUmgrPov8E3FF1Td02MDUSMnDGfCgDE6JjLRGbDgkosoIAUH1cOGCuOgY2%2B%2BGpi0BYCBsepeGW7jxUDEu3zsACknaXMozdcEWNzCW%2B1aK%2FQ2rtjGPcGfFwkzlsYONcplaWRUZvXdKVnhTFKgw4tOrIf94h4R5P9z7RKagmBvo9HqQrn1OaOdcf3vZahVHBVzB%2By5U7Xhc8RiRh7lcGzfaPvdYlS57swzIZwcwAfu&X-Amz-Signature=571f1ab5d9e555d7bde6397d133eff3a4ac4935ddb52fb89a15c93b438059df0&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Specific enzyme activity (U/mg) of heterologous glucose-6-phosphate dehydrogenase
| Variant | Roos et al. [18] | Wang et al. [20] | Huang et al. [19] | Wang and Engel [21] | Gómez-Manzo et al. [33] | Gómez-Manzo et al. [17] | Gómez-Manzo et al. [23] | Boonyuen et al. [22] |
|---|---|---|---|---|---|---|---|---|
| Wild-type G6PD | 210 | 180 | 182 | 210 | 224 | 224 | 230 | 228 |
| Amsterdam | – | – | – | 95 | – | – | – | – |
| Volendam | 36 | – | – | – | – | – | – | – |
| Wisconsin | – | – | – | – | 178 | – | – | – |
| Nashville | – | 130 | – | – | – | 103 | – | – |
| Yucatan | – | – | – | – | – | 132 | – | – |
| Valladolid | – | – | – | – | – | 92 | – | – |
| Mexico City | – | – | – | – | – | 175 | – | – |
| Mahidol | – | – | 177 | – | – | – | – | 141 |
| Fukaya | – | 175 | – | – | – | – | – | – |
| Champinas | – | 160 | – | – | – | – | – | – |
| Plymouth | – | – | 187 | – | – | – | – | – |
| Viangchan | – | – | – | – | – | – | 228 | 107 |
| Zacatecas | – | – | – | – | – | – | 58 | – |
| Vanua-Lava | – | – | – | – | – | – | 182 | – |