Have a personal or library account? Click to login
Osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells encapsulated in Thai silk fibroin/collagen hydrogel: a pilot study in vitro Cover

Osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells encapsulated in Thai silk fibroin/collagen hydrogel: a pilot study in vitro

Open Access
|Oct 2019

References

  1. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 2008; 14:149–65.
  2. Thitiwuthikiat P, Ii M, Saito T, Asahi M, Kanokpanont S, Tabata Y. A vascular patch prepared from Thai silk fibroin and gelatin hydrogel incorporating simvastatin-micelles to recruit endothelial progenitor cells. Tissue Eng Part A. 2015; 21:1309–19.
  3. Vorrapakdee R, Kanokpanont S, Ratanavaraporn J, Waikakul S, Charoenlap C, Damrongsakkul S. Modification of human cancellous bone using Thai silk fibroin and gelatin for enhanced osteoconductive potential. J Mater Sci Mater Med. 2013; 24:735–44.
  4. Floren M, Migliaresi C, Motta A. Processing techniques and applications of silk hydrogels in bioengineering. J Funct Biomater. 2016; 7:pii:E26. doi: 10.3390/jfb7030026
  5. Wang HY, Zhang YQ. Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog. 2015; 31:630–40.
  6. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011; 6:1612–31.
  7. Kang GD, Nahm JH, Park JS, Moon JY, Cho CS, Yeo JH. Effects of poloxamer on the gelation of silk fibroin. Macromol Rapid Commun. 2000; 21:788–91.
  8. Wu X, Hou J, Li M, Wang J, Kaplan DL, Lu S. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomater. 2012; 8:2185–92.
  9. Yücel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophys J. 2009; 97:2044–50.
  10. Apinun J, Yamdech R, Damrongsakkul S, Jamkratoke J, Kanokpanont S. Viability of rat’s bone marrow-derived mesenchymal stem cells in a surfactant-induced Thai silk fibroin hydrogel. In: Biomedical Engineering International Conference: BMEiCON 2017: Proceedings of the 10th Biomedical Engineering International Conference; 2017 31 Aug – 2 Sept; Hokkaido, Japan.
  11. Ghezzi CE, Marelli B, Donelli I, Alessandrino A, Freddi G, Nazhat SN. The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen-silk fibroin construct. Biomaterials. 2014; 35:6236–47.
  12. Ghezzi CE, Marelli B, Donelli I, Alessandrino A, Freddi G, Nazhat SN. Multilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages. J Tissue Eng Regen Med. 2015; 11:2046–59.
  13. Long K, Liu Y, Li W, Wang L, Liu S, Wang Y, Ren L. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering. J Biomed Mater Res A. 2015; 103:1159–68.
  14. Shen Y, Redmond SL, Papadimitriou JM, Teh BM, Yan S, Wang Y, et al. The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear. Biomed Mater. 2014; 9:015015. doi: 10.1088/1748-6041/9/1/015015
  15. Wang G, Hu X, Lin W, Dong C, Wu H. Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering. In Vitro Cell Dev Biol Anim. 2011; 47:234–40.
  16. Wei G, Li C, Fu Q, Xu Y, Li H. Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. Int Urol Nephrol. 2015; 47:95–9.
  17. Marelli B, Ghezzi CE, Alessandrino A, Barralet JE, Freddi G, Nazhat SN. Silk fibroin derived polypeptide-induced biomineralization of collagen. Biomaterials. 2012; 33:102–8.
  18. Vachiraroj N, Ratanavaraporn J, Damrongsakkul S, Pichyangkura R, Banaprasert T, Kanokpanont S. A comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutes. Int J Biol Macromol. 2009; 45:470–7.
  19. Ratanavaraporn J, Kanokpanont S, Damrongsakkul S. The development of injectable gelatin/silk fibroin microspheres for the dual delivery of curcumin and piperine. J Mater Sci Mater Med. 2014; 25:401–10.
  20. Ginis I, Weinreb M, Abramov N, Shinar D, Merchav S, Schwartz A, et al. Bone progenitors produced by direct osteogenic differentiation of the unprocessed bone marrow demonstrate high osteogenic potential in vitro and in vivo. Biores Open Access. 2012; 1:69–78.
  21. Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials. 2005; 26:3587–96.
  22. Lindborg BA, Brekke JH, Scott CM, Chai YW, Ulrich C, Sandquist L, et al. A chitosan-hyaluronan-based hydrogel-hydrocolloid supports in vitro culture and differentiation of human mesenchymal stem/stromal cells. Tissue Eng Part A. 2015; 21:1952–62.
  23. Moshaverinia A, Chen C, Akiyama K, Xu X, Chee WW, Schricker SR, Shi S. Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. J Biomed Mater Res A. 2013; 101:3285–94.
  24. Raucci MG, Alvarez-Perez MA, Demitri C, Sannino A, Ambrosio L. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels. J Appl Biomater Funct Mater. 2012; 10:302–7.
  25. Sánchez-Ferrero A, Mata Á, Mateos-Timoneda MA, Rodríguez-Cabello JC, Alonso M, Planell J, Engel E. Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration. Biomaterials. 2015; 68:42–53.
DOI: https://doi.org/10.1515/abm-2019-0030 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 273 - 279
Published on: Oct 24, 2019
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 Jirun Apinun, Sittisak Honsawek, Somsak Kuptniratsaikul, Jutarat Jamkratoke, Sorada Kanokpanont, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.