Have a personal or library account? Click to login
Assessment of bioaerosols in tuberculosis high-risk areas of health care facilities in central Thailand Cover

Assessment of bioaerosols in tuberculosis high-risk areas of health care facilities in central Thailand

Open Access
|Apr 2019

References

  1. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol. 2001; 11:231–52.
  2. Prussin AJ 2nd, Marr LC. Sources of airborne microorganisms in the built environment. Microbiome. 2015; 3:78. doi: 10.1186/s40168-015-0144-z
  3. Kim K-H, Kabir E, Jahan SA. Airborne bioaerosols and their impact on human health. J Environ Sci. 2018; 67:23–35.
  4. Chaivisit P, Suksaroj T, Romyen D, Choosong T. Bioaerosols assessment in the intensive care unit of a tertiary care hospital. Songkla Med J. 2016; 34:11–25.
  5. Luksamijarulkul P, Supapvanit C, Loosereewanich P, Aiumlaor P. Risk assessment towards tuberculosis among hospital personnel: administrative control, risk exposure, use of protective barriers and microbial air quality. Southeast Asian J Trop Med Public Health. 2004; 35:1005–11.
  6. Liao C-M, Luo W-C. Use of temporal/seasonal- and size-dependent bioaerosol data to characterize the contribution of outdoor fungi to residential exposures. Sci Total Environ. 2005; 347:78–97.
  7. Obbard JP, Fang LS. Airborne concentrations of bacteria in a hospital environment in Singapore. Water Air Soil Pollut. 2003; 144:333–41.
  8. Osman ME, Ibrahim HY, Yousef FA, Abo Elnasr AA, Saeed Y, Abdel Hameed AA. A study on microbiological contamination on air quality in hospitals in Egypt. Indoor Built Environ. 2018; 27:963–8.
  9. American Conference of Governmental Industrial Hygienists (ACGIH). Guidelines for the assessment of bioaerosols in the indoor environment. Cincinnati: ACGIH; 1989. p. 301.
  10. Solomon FB, Wadilo FW, Arota AA, Abraham YL. Antibiotic resistant airborne bacteria and their multidrug resistance pattern at University teaching referral Hospital in South Ethiopia. Ann Clin Microbiol Antimicrob. 2017; 16:29. doi:10.1186/s12941-017-0204-2.
  11. World Health Organization. Global tuberculosis report 2016. Geneva: WHO; 2016. p. 1, 13–4.
  12. Chen P-S, Li C-S. Concentration profiles of airborne Mycobacterium tuberculosis in a hospital. Aerosol Sci Technol. 2008; 42:194–200.
  13. Hubad B, Lapanje A. Inadequate hospital ventilation system increases the risk of nosocomial Mycobacterium tuberculosis. J Hosp Infect. 2012; 80:88–91.
  14. Matuka O, Singh TS, Bryce E, Yassi A, Kgasha O, Zungu M, et al. Pilot study to detect airborne Mycobacterium tuberculosis exposure in a South African public healthcare facility outpatient clinic. J Hosp Infect. 2015; 89:192–6.
  15. National Institute for Occupational Safety and Health (NIOSH). NIOSH Manual of Analytical Methods (NMAM). 4th ed. Aerobic bacteria by GC-FAME. Method 0801, Issue 1: 15 January 1998. Cincinnati: NIOSH; 1998. p. 1–4.
  16. Kyte L, Kleyn J, Scoggins H, Bridgen M. Plants from test tubes: an introduction to micropropagation. 4th ed. London: Timber Press; 2013.
  17. Fang Z, Ouyang Z, Zheng H, Wang X, Hu L. Culturable airborne bacteria in outdoor environments in Beijing, China. Microb Ecol. 2007; 54:487–96.
  18. Tuberculosis Coalition for Technical Assistance (TBCTA). Implementing the WHO policy on TB infection control in health-care facilities, congregate settings and households. Washington, DC: TB CTA, The Global Health Bureau, Office of Health, Infectious Disease and Nutrition (HIDN), United States Agency for International Development (USAID); 2009.
  19. Luksamijarulkul P, Kiennukul N, Vatthanasomboon P. Laboratory facility design and microbial indoor air quality in selected hospital laboratories. Southeast Asian J Trop Med Public Health. 2014; 45:746–55.
  20. Luksamijarulkul P, Aiempradit N, Vatanasomboon P. Microbial contamination on used surgical masks among hospital personnel and microbial air quality in their working wards: a hospital in Bangkok. Oman Med J. 2014; 29:346–50.
  21. Kim KY, Kim CN. Airborne microbiological characteristics in public buildings of Korea. Build Environ. 2007; 42:2188–96.
  22. Goudarzi G, Soleimani Z, Sadeghinejad B, Alighardashi M, Latifi SM, Moradi M. Visiting hours impact on indoor to outdoor ratio of fungi concentration at Golestan University Hospital in Ahvaz, Iran. Environ Pollut. 2017; 6:62–9.
  23. Park D-U, Yeom J-K, Lee WJ, Lee K-M. Assessment of the levels of airborne bacteria, gram-negative bacteria, and fungi in hospital lobbies. Int J Environ Res Public Health. 2013; 10:541–55.
  24. Cabo Verde S, Almeida SM, Matos J, Guerreiro D, Meneses M, Faria T, et al. Microbiological assessment of indoor air quality at different hospital sites. Res Microbiol. 2015; 166:557–63.
  25. Jiamjarasrangsi W, Bualert S, Chongthaleong A, Chaindamporn A, Udomsantisuk N, Euasamarnjit W. Inadequate ventilation for nosocomial tuberculosis prevention in public hospitals in Central Thailand. Int J Tuberc Lung Dis. 2009; 13:454–9.
DOI: https://doi.org/10.1515/abm-2019-0002 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 55 - 63
Published on: Apr 30, 2019
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 Jarmmaree Sornboot, Wichai Aekplakorn, Pongrama Ramasoota, Surat Bualert, Somying Tumwasorn, Wiroj Jiamjarasrangsi, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.