Have a personal or library account? Click to login
Long-Term Trends in the Chemical and Mechanical Denudation in a Small Carpathian Catchment Cover

Long-Term Trends in the Chemical and Mechanical Denudation in a Small Carpathian Catchment

Open Access
|Aug 2025

References

  1. Adamczyk B., Maciaszek W., Januszek K., 1973. Gleby gromady Szymbark i ich wartość użytkowa (The soils of village group Szymbark and their utility value). In: Starkel L. (ed.), Gleby i zbiorowiska leśne okolic Szymbarku. Dokumentacja Geograficzna IGiPZ PAN 1: 15–72.
  2. Beylich A.A., Laute K., 2004. Sediment (dis)connectivity and contemporary rates of chemical and mechanical denudation in selected Mediterranean drainage basin systems in eastern Spain. In: EGU General Assembly. Vienna, Austria, 14–19 Apr 2024, EGU24-4064, DOI 10.5194/egus-phere-egu24-4064.
  3. Beylich A.A., Laute K., 2021. Fluvial processes and contemporary fluvial denudation in different mountain landscapes in western and central Norway. In: Beylich A.A. (ed.), Landscapes and landforms of Norway. World geomorphological landscapes. Springer, Cham: 147–168. DOI 10.1007/978-3-030-52563-7_7.
  4. Bezak P., Mitchley J., 2014. Drivers of change in mountain farming in Slovakia: From socialist collectivisation to the common agricultural policy. Regional Environmental Change 14(4): 1343–1356. DOI 10.1007/s10113-013-0580-x.
  5. Bochenek W., 2007. Możliwość ekstrapolacji punktowych wyników wysokości opadów atmosferycznych na przekładzie posterunku opadowego „IG PAN” w Szymbarku w różnych skalach czasowych. In: Kostrzewski A., Andrzejewska A. (eds), Program Zintegrowanego Monitoringu Środowiska Przyrodniczego a zadania ochrony obszarów Natura 2000. Biblioteka Monitoringu Środowiska, Warszawa: 101–114.
  6. Bochenek W., 2020. Prawidłowości obiegu wody na obszarze beskidzko-pogórskim Karpat Zachodnich na przykładzie zlewni Bystrzanki w świetle zmian klimatu i działalności człowieka (Regularities of the water cycle in the Western Carpathians Beskids-foothills area based on the example of the Bystrzanka catchment in the light of climate change and human activity) IGiPZ PAN 271: 1–192.
  7. Bochenek W., Szydłowski T., 2024. The influence of local and distant sources of precipitation pollutant emissions in the Western Carpathians in the context of climatic and socio-economic changes. The Science of the Total Environment 954: 176793. DOI 10.1016/j.scitotenv.2024.176793.
  8. Bucała A., Budek A., 2011. Zmiany morfologii koryt wskutek opadów ulewnych na przykładzie potoku Suszanka, Beskid Średni (Geomorphic change due to heavy rainfall as exemplified by the Suszanka stream, the Beskid Średni Mts., Poland). Czasopismo Geograficzne 82: 321–332.
  9. Bucała-Hrabia A., 2017. Long-term impact of socio-economic changes on agricultural land use in the Polish Carpathians. Land Use Policy 64: 391–404. DOI 10.1016/j.landusepol.2017.03.013.
  10. Caine N., 2004. Mechanical and chemical denudation in mountain systems. In: Owens P.N., Slaymaker O. (eds), Mountain geomorphology. Routledge, London: 132–152.
  11. Cendrero A., Remondo J., Beylich A., Cienciala P., Forte L., Gusarov V., Kijowska-Strugała M., Laute K., Li D., Navas A., Soldati M., Vergari F., Zwoliński Z., Dixon J., Knight J., Nadal-Romero E., Płaczkowska E., 2022. Denudation and geomorphic change in the Anthropocene; a global overview. Earth-Science Reviews 233: 104186. DOI 10.1016/j.earscirev.2022.104186.
  12. Central Statistical Office of Poland, 2022. Population data for communes in Poland in 2022.
  13. Chen Y.Y., Huang W., Wang W.H., Juang J.Y., Hong J.S., Kato T., Luyssaert S., 2019. Reconstructing Taiwan’s land cover changes between 1904 and 2015 from historical maps and satellite images. Scientific Reports 9(1): 3643. DOI 10.1038/s41598-019-40063-1.
  14. Ciupa T., 2008. Wpływ częstotliwości pomiarów transportu fluwialnego na określenie jego wielkości i dynamiki podczas wezbrań w zlewniach o zróżnicowanym użytkowaniu na przykładzie rzeki Silnicy i Sufraganiec (Kielce) (Frequency of field measurements as a clue for determination of the magnitude and dynamics of the fluvial transport during high water stands within catchments of different use as exemplified by the rivers Silnica and Sufraganiec (Kielce)). Przegląd Naukowy – Inżynieria i Kształtowanie Środowiska SGGW, Warszawa 17(2): 117–126.
  15. Corsi S.R., Graczyk D.J., Geis S.W., Booth N.L., Richards K.D., 2010. A fresh look at road salt: Aquatic toxicity and water-quality impacts on local, regional, and national scales. Environmental Science & Technology Journal 44(19): 7376–7382. DOI 10.1021/es101333u
  16. Czekaj M., Wojewodzic T., 2011. Bydło w Karpatach Polskich – zróżnicowanie przestrzenne i dynamika zmian. Wieś i Rolnictwo 4(153): 179–191. DOI 10.53098/wir.2011.4.153/12.
  17. Dall’Osto M., Beddows D.C.S., Gietl J.K., Olatunbosun O.A., Yang X.G., Harrison R.M., 2014. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS). Atmospheric Environment 94: 224– 230. DOI 10.1016/j.atmosenv.2014.05.026
  18. District Road Administration in Gorlice, 2024. Data of de-icing salt used in the Gorlice disctrict.
  19. Figuła K., 1966. Badania transportu rumowiska w ciekach górskich i podgórskich o różnej budowie geologicznej i użytkowaniu. Wiadomości IMUZ 3(6): 131–145.
  20. Froehlich W., 1980. Hydrologiczne aspekty pogłębiania koryt rzek beskidzkich (Hydrological aspects of the deepening of Beskids rivers). Zeszyty Problemowe Postępów Nauk Rolniczych 235.
  21. Froehlich W., 1986. Sediment delivery model for the Homerka drainage basin. In: Hadley R.F. (ed.), Drainage basin sediment delivery. Vol. 159. IAHS Publication: 403–412.
  22. Froehlich W., Walling D.E., 1997. The role of unmetalled roads as a sediment source in the fluvial systems of the Polish Flysch Carpathians. IAHS Publication 245: 159–168.
  23. Gil E., 1976. Spłukiwanie Gleby na stokach fliszowych w rejonie Szymbarku (Slopewash on flysch slopes in the region of Szymbark). Dokumentacja Geograficzna IGiPZ PAN. Studia nad środowiskiem geograficznym okolic Szymbarku 2: 65.
  24. Gil E., Kijowska-Strugała M., Demczuk P., 2021. Soil erosion dynamics on a cultivated slope in the Western Polish Carpathians based on over 30 years of plot studies. Catena 207: 105682. DOI 10.1016/j.catena.2021.105682.
  25. Gomes M.C.V., Vieira B.C., Salgado A.A.R., Braucher R., 2022. Debris flow and long-term denudation rates in a tropical passive margin escarpment in South America. Geomorphology 413: 108333. DOI 10.1016/j.geomorph.2022.108333.
  26. Górka Z., Górz B., Guzik C., 2002. Rolnictwo i obszary wiejskie w województwie małopolskim. In: Górka Z., Jelonek A. (eds), Geograficzne uwarunkowania rozwoju Małopolski. Pedagogical Academy in Cracow Press, Cracow: 91–108.
  27. Gorlice Municipal Office, 2024. Data of: Construction works, sewage systems, deicing salt.
  28. Hamidifar H., Nones M., Rowinski P.M., 2024. Flood modeling and fluvial dynamics: A scoping review on the role of sediment transport. Earth-Science Reviews 253: 104775. DOI 10.1016/j.earscirev.2024.104775.
  29. Hisdal H., Tallaksen L.M., Clausen B., Peters E., Gustard A., 2004. Hydrological drought characteristics. In: Tallaksen L.M., van Lanen H.A.J. (eds), Hydrological drought. processes and estimation methods for streamflow and groundwater, developments in water science. Elsevier, Amsterdam: 139–198.
  30. Kelly V.R., Lovett G.M., Weathers K.C., Findlay S.E.G., Strayer D.L., Burns D.J., Likens G.E., 2008. Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamwater concentration. Environmental Science & Technology 42: 410–415. DOI 10.1021/es071391l.
  31. Keppeler E., Lewis J., 2007. Understanding the hydrologic consequences of timber-harvest and roading: four decades of streamflow and sediment results from the Caspar Creek experimental watersheds. In: Furniss M., Clifton C., Ronnenberg K. (eds.), Advancing the fundamental sciences: proceedings of the forest service national earth sciences conference. San Diego, CA, 18–22 October 2004. General Technical Reports. PNW-GTR-689. US Forest Service, Pacific Northwest Research Station, Portland, OR.
  32. Kijowska-Strugała M., 2015. Transport zawiesiny w warunkach zmieniającej się antropopresji w zlewni Bystrzanki (Karpaty Fliszowe). IGiPZ PAN, Warszawa: 140.
  33. Kijowska-Strugała M., 2019. Sediment variability in a small catchment of the Polish Western Carpathians during transition from centrally planned to free-market economics. Geomorphology 325: 119–129. DOI 10.1016/J.geomorph.2018.10.008.
  34. Kijowska-Strugała M., Bochenek W., 2023. Land use changes impact on selected chemical denudation element and components of water cycle in small mountain catchment using SWAT model. Geomorphology 435: 108747. DOI 10.1016/J.geomorph.2023.108747.
  35. Kijowska-Strugała M., Bucała-Hrabia A., 2019. Floods types in a mountain catchment: The Ochotnica River, Poland. Acta Geographica Slovenica 59(1): 23–36. DOI 10.3986/AGS.2250.
  36. Kopciowski R., Zimnal Z., Chrzastowski J., Jankowski L., Szymakowska F., 1997. Szczegółowa mapa geologiczna Polski w skali 1:50000, Arkusz Gorlice. Państwowy Instytut Geologiczny, Warszawa.
  37. Kostrzewski A., Klimczak R., Stach A., Zwoliński Z., 1992. Wpływ procesów katastrofalnych na funkcjonowanie współczesnego system denudacyjnego obszarów młodoglacjalnych – Pomorze Zachodnie (The influence of catastrophic processes on present-day denudative system functions in young glacial regions, West Pomerania). Badania fizycznogeograficzne nas Polską Zachodnią tom XLIII, Seria A 43: 55–82.
  38. Kostrzewski A., Zwoliński Z., 1992. Udział denudacji chemicznej i mechanicznej we współczesnym systemie geomorficznym górnej Parsęty (Pomorze Zachodnie). Prace Geograficzne IGiPZ PAN 155: 11–45.
  39. Kozikowski H., 1956. Geologia płaszczowiny magurskiej i jej okien tektonicznych na południowy zachód od Gorlic. Biuletyn Instytutu Geologicznego 110: 47–77.
  40. Krzemień K., 2003. The Czarny Dunajec River, Poland, as ex ample of human – Induced development tendencies in a mountain river channel. Landform Analysis 4: 57–64.
  41. Lach J., Wyżga B., 2002. Channel incision and flow increase of the upper Wisłoka River southern Poland, subsequent to the reafforestation of its catchment. Earth Surface Processes and Landforms 27: 445–462. DOI 10.1002/esp.329.
  42. Lambor J., 1965. Podstawy i zasady gospodarki wodnej. Wydawnictwo Komunikacji i Łaczności 60, PIHM, Warszawa.
  43. Lana-Renault N., Regüés D., Martí-Bono C., Beguería S., Latron J., Nadal E., Serrano P., García-Ruiz J.M., 2007. Temporal variability in the relationships between precipitation, discharge and suspended sediment concentration in a small Mediterranean mountain catchment. Hydrology Research 38(2): 139–150. DOI 10.2166/nh.2007.003.
  44. Larsen I.J., Montgomery D.R., Greenberg H.M., 2014. The contribution of mountains to global denudation. Geology 42(6): 527–530. DOI 10.1130/G35136.1.
  45. Latocha A., 2006. Zmiany użytkowania ziemi w czasach historycznych i ich wpływ na procesy rzeźbotwórcze na stokach i w korytach rzecznych w Sudetach Kłodzkich (Land-use changes in historical times and their impact on morphogenetic processes on slopes and in river channels in the Kłodzkie Sudety Mts.). Przegląd Geograficzny 78(3): 339–363.
  46. Lenzi M.A., Marchi L., 2000. Suspended sediment load during floods in a small stream of the Dolomites (northeastern Italy). Catena 39(4): 267–282. DOI 10.1016/S0341-8162(00)00079-5.
  47. Liu J., Zhang J., Kong D., Feng X., Feng S., Xiao M., 2021. Contributions of anthropogenic forcings to evapotranspiration changes over 1980–2020 using GLEAM and CMIP6 simulations. Journal of Geophysical Research: Atmospheres 126(22). DOI 10.1029/2021jd035367.
  48. Mariotti A., Blard P.H., Charreau J., Toucanne S., Jorry S.J., Molliex S., Bourlès D.L., Aumaître G., Keddadouche K., 2021. Nonlinear forcing of climate on mountain denudation during glaciations. Nature Geoscience 14(1): 16–22. DOI 10.1038/s41561-020-00672-2.
  49. Milliman J.D., Farnsworth K.L., 2013. River discharge to the coastal ocean: A global synthesis. Cambridge: Cambridge University Press. DOI 10.1017/CBO9780511781247.
  50. Milliman J.D., Syvitski J.P.M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology 100: 525–544. DOI 10.1086/629606.
  51. Montgomery D., Brandon M., 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters 201: 481–489. DOI 10.1016/S0012-821X(02)00725-2.
  52. Motha J.A., Wallbrink P.J., Hairsine P.B., Grayson R.B., 2004. Unsealed roads as suspended sediment sources in an agricultural catchment in south-eastern Australia. Journal of Hydrology 286(1–4): 1–18. DOI 10.1016/J.jhydrol.2003.07.006.
  53. Munteanu C., Kuemmerle T., Boltiziar M., Butsic V., Gimmi U., Kaim D., Király G., Konkoly-Gyuró E., Kozak J., Lieskovský J., Mojses M., Müller D., Ostafin K., Ostapowicz K., Shandra O., Štych P., Walker S., Radeloff V.C., 2014. Forest and agricultural land change in the Carpathian region – A meta-analysis of long-term patterns and drivers of change. Land Use Policy 38: 685–697. DOI 10.1016/j.landusepol.2014.01.012.
  54. Newburn L.H., 1988. Modern sampling equipment: Design and application. In: Keith L.H. (ed.), Principles of environmental sampling. American Chemical Society, Salem, USA: 209–220.
  55. Niemirowska J., 1970. Charakterystyka hydrograficzna zlewni Bystrzanki i Bielanki. In: Dauksza L., Gil E., Kotarba A., Kramarz K., Niemirowska J., Słupik J., Starkel L. (eds), Badania fizyczno-geograficzne otoczenia Stacji Naukowo-Badawczej Instytutu Geografii PAN w Szymbarku. Dokumentacja Geograficzna IGiPZ PAN. Warszawa PAN Vol. 3: 25–38.
  56. Olechnowicz-Bobrowska B., Skowera B., Wojkowski J., Ziernicka-Wojtaszek A., 1970. Częstość dni z opadem w Polsce (Frequency of days with precipitation in Poland). Prace Geograficzne IGiPZ PAN 86, Warszawa: 75.
  57. Olędzki J.R., 2007. Raport z badań „Monitorowanie użytkowania ziemi obszarów badawczych Stacji Bazowych Zintegrowanego Monitoringu Środowiska (program 1)”, maszynopis. Główny Inspektorat Ochrony Środowiska, Warszawa.
  58. Oygarden L., Deelstra J., Eggestad H.O., Vandsemb S.M., 2003. Sediment transport in agricultural catchments – The need for methods to trace sediment sources. In: Bogen J., Fergus T., Walling D.E. (eds), Erosion and sediment transport measurement in rivers: technological and methodological advances. Vol. 283. IAHS Press, Wallingford, UK: 79–87.
  59. Ozga-Zielińska M., Brzeziński J., 1997. Hydrologia stosowana. PWN, Warszawa.
  60. Phillips J.D., 2003. Alluvial storage and the long-term stability of sediment yields. Basin Research 1: 153–163. DOI 10.1046/j.1365-2117.2003.00204.x.
  61. Pińskwar I., Choryński A., Graczyk D., Kundzewicz Z.W., 2019. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theoretical and Applied Climatology 135: 773–787. DOI 10.1007/s00704-018-2372-1.
  62. Piwowar A., 2022. Consumption of mineral fertilizers in the Polish agriculture – Trends and directions of changes. Agricultural Research 11: 477–487. DOI 10.1007/s40003-021-00591-7
  63. Płaczkowska E., Kijowska-Strugała M., Ketzler G., Bogena H.R., Leuchner M., 2024. Solute fluxes in headwater catchments with contrasting anthropogenic impact. Geomorphology 454: 109166. DOI 10.1016/j.geomorph.2024.109166.
  64. Prokop P., Sarkar S., 2012. Natural and human impact on land use change of the Sikkimese-Bhutanese Himalayan piedmont India. Quaestiones Geographicae 31(3): 63–75. View at publisherView in ScopusGoogl. DOI 10.2478/v10117-012-0010-z.
  65. Pulina M., 1974. Denudacja chemiczna na obszarach krasu węglanowego (Chemical denudation on the carbonate karst areas). Prace Geograficzne 105: 159.
  66. Richards K.S., 2002. Drainage basin structure, sediment delivery and the response to environmental change. In: jones S.J., Frostick L.E. (eds), Sediment flux to basins: Causes, controls and consequences. Special Publications, London: 149–160. DOI 10.1144/GSL.SP.2002.191.01.10.
  67. Rivas V., Cendrero A., Hurtado M., Cabral M., Giménez J., Forte L., del Río L., Cantú M., Becker A., 2006. geomorphic consequences of urban development and mining activities; an analysis of study areas in Spain and Argentina. Geomorphology 73(3–4): 185–206. DOI 10.1016/j.geomorph.2005.08.006.
  68. Sikora W., 1970. Budowa geologiczna płaszczowiny magurskiej między Szymbarkiem Ruskim a Nawojową. Biuletyn Państwowego Instytutu Geologicznego 235: 5–122.
  69. Siwek J., Siwek J.P., Żelazny M., 2013. Environmental and land use factors affecting phosphate hysteresis patterns of stream water during flood events (Carpathian Foothills, Poland). Hydrological Processes 27(25): 3674–3684. DOI 10.1002/hyp.9484.
  70. Soil Survey Division Staff, 2017. Soil survey manual. USDA Agriculture handbook 18: 120-131.
  71. Soja R., 2002. Hydrologiczne aspekty antropopresji w Polskich Karpatach. Prace Geograficzne IGiPZ PAN 186, Warszawa: 130.
  72. Souvignet M., Oyarzún R., Verbist K.M., Gaese H., Heinrich J., 2012. Hydro-meteorological trends in semi-arid north-central Chile (29–32 S): Water resources implications for a fragile Andean region. Hydrological Sciences Journal 57(3): 479–495. DOI 10.1080/02626667.2012.665607.
  73. Starkel L., 1972. Charakterystyka rzeźby polskich Karpat i jej znaczenie dla gospodarki ludzkiej (An outline of the relief of the Polish Carpathians and its impertance for human management). Problemy Zagospodarowania Ziem Górskich 10: 75–150.
  74. Świdziński H., 1953. Budowa geologiczna i roponośność rejonu Szymbarku. Z badań geologicznych w Karpatach. Przegląd Geograficzny 80: 11–61.
  75. Świdziński H., 1973. Karpaty fliszowe między Dunajcem a Sanem. Regionalna Geologia Polski. Karpaty 1(2), Pol. Tow. Geol. Kraków: 362-422.
  76. Święchowicz J., 2002. Współdziałanie procesów stokowych i fluwialnych w odprowadzaniu materiału rozpuszczonego i zawiesiny w zlewni pogórskiej, Vol. 3. Przemiany Środowiska na PoGórzu Karpackim, IGiGP Uj, Kraków: 1–150.
  77. Switalski T.A., Bissonette J.A., DeLuca T.H., Luce C.H., Madej M.A., 2004. Benefits and impacts of road removal. Frontiers in Ecology and the Environment 2: 21–28. DOI 10.1890/1540-9295(2004)002[0021:BAIORR]2.0.CO;2.
  78. Syvitski J.P., Kettner A.J., Peckham S.D., Kao S.J., 2005. Predicting the flux of sediment to the coastal zone: Application to the Lanyang watershed, Northern Taiwan. Journal of Coastal Research 21(3): 580–587. DOI 10.2112/04-702A.1.
  79. Syvitski J., Restrepo-Ángel J., Saito Y., Overeem I., Wang H., Olago D., Vörösmarty C.J., 2022. Earth’s sediment cycle during the Anthropocene. Nature Reviews Earth & Environment 3: 179–196. DOI 10.1038/s43017-021-00253-w.
  80. Syvitski J., Waters C.N., Day J., Milliman J.D., Summerhayes C., Steffen W., Zalasiewicz J., Cearreta A., Gałuszka A., Hajdas I., Head M.J., Leinfelder R., McNeill J.R., Poirier C., Rose N.L., Shotyk W., Wagreich M., Williams M., 2020. Extraordinary human energy consumption and resultant Geological impacts beginning around 1950 17 CE initiated the proposed Anthropocene Epoch. Communications Earth and Environment 1: 32. DOI 10.1038/s43247-020-00029-y.
  81. Szklarek S., Eórecka A., Wojtal-Frankiewicz A., 2022. The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution – A review. Science of the Total Environment 805: 13. DOI 10.1016/j.scitotenv.2021.150289.
  82. Szwed M., 2019. Variability of precipitation in Poland under climate change. Theoretical and Applied Climatology 135(3): 1003–1015. DOI 10.1007/s00704-018-2408-6.
  83. Tekielak T., Michalik A., Bak Ł, 2007. Morfologiczne skutki wezbrań na odcinku koryta rzeki Łososiny (Morphological effects of freshets in section of the Łososina river channel). Infrastruktura i ekologia terenów wiejskich 4(2): 193–202.
  84. Thienpont L.M., Van Nuwenborg J.E., Reinauer H., Stöckl D., 1996. Validation of candidate reference methods based on ion chromatography for determination of total sodium, potassium, calcium and magnesium in serum through comparison with flame atomic emission and absorption spectrometry. Clinical Biochemistry 29(6): 501–508. DOI 10.1016/S0009-9120(96)00090-2.
  85. Tomkins K.M., Humphreys G.S., Wilkinson M.T., Fink D., Hesse P.P., Doerr S.H., Shakesby R.A., Wallbrink P.J., Blake W.H., 2007. Contemporary versus long-term denudation along a passive plate margin: The role of extreme events. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 32(7): 1013– 1031. DOI 10.1002/esp.1460.
  86. Vergara I., Santibañez F., Garreaud R., Aguilar G., 2024. The visible and hidden climatic effects on Earth’s denudation. Earth System Dynamics. Discussions (preprint). DOI 10.5194/esd-2024-27.
  87. Walling D.E., 2006. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79: 192–216. DOI 10.1016/j.geomorph.2006.06.019.
  88. Welc A., 1985. Zmienność denudacji chemicznej w Karpatach fliszowych (na przykŁadzie zlewni Potoku Bystrzanka) (Variability of chemical denudation in the Flysh Carpathians (with the Bystrzanka catchment as ex ample)). Dokumentacja Geograficzna IGiPZ PAN 5: 1–102.
  89. Wemple B.C., Swanson F.J., Jones J.A., 2001. Forest roads and Geomorphic process interactions, Cascade Range, Oregon. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 26(2): 191– 204. DOI 10.1002/1096-9837(200102)26:2<;191:AId-eS-P175>3.0.CO;2-u.
  90. Wójcik A., Rączkowski W., Mrozek T., Gil E., Zabuski L., Bochenek W., 2003. Alarm project final report. MS.
  91. Wren D.G., Barkdoll B.D., Kuhnle R.A., Derrow R.W., 2000. Field techniques for suspended sediment measurement. Journal of Hydraulic Engineering 126(2): 97–104. dOI 10.1061/(ASCE)0733-9429(2000)126:2(97).
  92. Wyżga B., Zawiejska J., Radecki-Pawlik A., 2016. Impact of channel incision on the hydraulics of flood flows: Examples from Polish Carpathian Rivers. Geomorphology 272: 10–20. DOI 10.1016/j.geomorph.2015.05.017.
  93. Żelazny M., 2005. Cechy fizykochemiczne opadów atmosferycznych. In: Żelazny M. (ed.), Dynamika obiegu związków biogennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim. Instytut Geografii i Gospodarki Przestrzennej UJ, Kraków: 63–100.
  94. Zwoliński Z., Gudowicz J., 2011. Pokrycie terenu i użytkowania ziemi w zlewniach Stacji Bazowych ZMŚP – mapy inwentaryzacyjne, maszynopis. Archiwum Centrum ZMŚP, UAM, Poznań.
  95. Zwoliński Z., Hildebrandt-Radke I., Mazurek M., Makohonienko M., 2018. Anthropogeomorphological metamorphosis of an urban area in the postglacial landscape: A case study of Poznań city. In: Thornbush M.J., Allen C.D. (eds), Urban Geomorphology. Elsevier: 55–77. DOI 10.1016/B978-0-12-811951-8.00004-7.
DOI: https://doi.org/10.14746/quageo-2025-0026 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 77 - 94
Submitted on: Feb 24, 2025
Published on: Aug 7, 2025
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2025 Małgorzata Kijowska-Strugała, Witold Bochenek, Sabina Wójcik, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.