Have a personal or library account? Click to login
Climatic Determinants of Changes in the Ice Regime of Carpathian Rivers Cover

Climatic Determinants of Changes in the Ice Regime of Carpathian Rivers

Open Access
|Mar 2025

References

  1. Anghileri D., Pianosi F., Soncini-Sessa R., 2014. Trend detection in seasonal data: From hydrology to water resources. Journal of Hydrology 511: 171–179. DOI 10.1016/j.jhy-drol.2014.01.022.
  2. Ashton G.D., 1986. River and lake ice engineering. Water Resources Publications, Littleton, Colorado.
  3. Ashton G.D., 2011. River and lake ice thickening, thinning, and snow ice formation. Cold Regions Science and Technology 68(1–2): 3–19. DOI 10.1016/j.coldregions.2011.05.004.
  4. Asuero A.G., Sayago A., González A.G., 2006. The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry 36(1): 41–59. DOI 10.1080/10408340500526766.
  5. Bagnold R.A., 1966. An approach to the sediment transport problem from general physics. Professional Paper 422. DOI 10.3133/pp422i.
  6. Batima P., Batnasan N., Bolormaa B., 2004. Trends in river and lake ice in Mongolia. AIACC (Assessments of Impacts and Adaptations to Climate Change) Working Paper No. 4.
  7. Beltaos S., (ed.) 2013. River ice formation. Committee on River Ice Processes and the Environment, Canadian Geophysical Union Hydrology Section, Edmonton.
  8. Bochenek W., Kijowska-Strugała M., 2022. Zmiany w strukturze odpływu wody ze zlewni karpackich w półroczu hydrologicznym zimowym w latach 19812020. Przegląd Geograficzny 94(4): 503–519. DOI 10.7163/PrzG.2022.4.5.
  9. Brown D.R., Arp C.D., Brinkman T.J., Cellarius B.A., Engram M., Miller M.E., Spellman K.V., 2023. Long-term change and geospatial patterns of river ice cover and navigability in southcentral Alaska detected with remote sensing. Arctic, Antarctic, and Alpine Research 55(1): 1–18. DOI 10.1080/15230430.2023.2241279.
  10. Chen Y., She Y., 2020. Long-term variations of river ice breakup timing across Canada and its response to climate change. Cold Regions Science and Technology 176: 103091. DOI 10.1016/j.coldregions.2020.103091.
  11. Cyberska B., 1975. Wpływ zbiornika retencyjnego na trans-formację naturalnego reżimu termicznego rzeki. Prace IMGW, 4: 45–108.
  12. Dynowska I., 1971. Typy reżimów rzecznych w Polsce, Zeszyty Naukowe Uniwersytet Jagielloński, Prace Geograficzne: 28.
  13. Fukś M., 2023. Changes in river ice cover in the context of climate change and dam impacts: A review. Aquatic Sciences 85(113): 1–23. DOI 10.1007/s00027-023-01011-4.
  14. Fukś M., 2024. Assessment of the impact of dam reservoirs on river ice cover - An example from the Carpathians (central Europe). The Cryosphere 18: 2509–2529. DOI 10.5194/tc-18-2509-2024.
  15. Fukś M., Kędra M., Wiejaczka Ł., 2024. Assessing the impact of climate change and reservoir operation on the thermal and ice regime of mountain rivers using the XGBoost model and wavelet analysis. Stochastic Environmental Research and Risk Assessment 38: 4275–4294. DOI 10.1007/s00477-024-02803-2.
  16. Gołek J., 1957. Zjawiska lodowe na rzekach polskich. Prace Państwowego Instytutu Hydrologiczno-Meteorologicznego, Warszawa: 48.
  17. Graf R., Wrzesiński D., 2020. Detecting patterns of changes in river water temperature in Poland. Water 12(5): 1–20. DOI 10.3390/w12051327.
  18. Gutiérrez J.M., Jones R.G., Narisma G.T., Alves L.M., Amjad M., Gorodetskaya I.V., Grose M., Klutse N.A.B., Krakovska S., Li J., Martínez-Castro D., Mearns L.O., Mernild S.H., Ngo-Duc T., van den Hurk B., Yoon J.-H., 2021. Atlas. In: Masson-Delmotte V., zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., and Zhou B. (eds), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: 1927-2058. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. DOI 10.1017/9781009157896.021.
  19. Hamed K.H., 2008. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology 349(3–4): 350–363. DOI 10.1016/j.jhy-drol.2007.11.009.
  20. Hamed K.H., Rao A.R., 1998. A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology 204(1–4): 182–196. DOI 10.1016/S0022-1694(97)00125-X.
  21. Hanus S., Hrachowitz M., Zekollari H., Schoups G., Vizcaino M., Kaitna R., 2021. Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria. Hydrology and Earth System Sciences 25: 3429–3453. DOI 10.5194/hess-25-3429-2021.
  22. Harris I., Osborn T.J., Jones P., Lister D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7(109): 1–18. DOI 10.1038/s41597-020-0453-3.
  23. Hauke J., Kossowski T., 2011. Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data. Quaestiones Geographicae 30(2): 87–93. DOI 10.2478/v10117-011-0021-1.
  24. IMWM-NRI [Institute of Meteorology and Water Management – National Research Institute], 2024. Online: https://danepubliczne.imgw.pl/(accessed 31 July 2024).
  25. Jonkers A.R.T., Sharkey K.J., 2016. The differential warming response of Britain’s rivers (1982-2011). Plos One 11(11): e0166247. DOI 10.1371/journal.pone.0166247.
  26. Kędra M., 2020. Regional response to global warming: Water temperature trends in semi-natural mountain river systems. Water 12(1): 1–15. DOI 10.3390/w12010283.
  27. Kędra M., Wiejaczka Ł, 2018. Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Science of the Total Environment 626: 1474–1483. DOI 10.1016/j.scitotenv.2017.10.044.
  28. Kędzia S., Chrustek P., Kubacka D., Pyrc R., 2023. Variability and changes of the height and duration of snow cover on the Gąsienicowa Glade (Tatras). International Journal of Climatology 43(15): 7018–7031. DOI 10.1002/joc.8249.
  29. Kendall, M.G., 1975. Rank correlation methods. Oxford University Press, Oxford.
  30. Kochanek K., Rutkowska A., Baran-Gurgul K., Kuptel-Mar-kiewicz I., Mirosław-Świątek D., Grygoruk M., 2024. Analysis of changes in the occurrence of ice phenomena in upland and mountain rivers of Poland. Plos One 19(7): e0307842. DOI 10.1371/journal.pone.0307842.
  31. Laghari A.N., Vanham D., Rauch W., 2012. To what extent does climate change result in a shift in Alpine hydrology? A case study in the Austrian Alps. Hydrological Sciences Journal 57(1): 103–117. DOI 10.1080/02626667.2011.637040.
  32. Lind L., Alfredsen K., Kuglerová L., Nilsson C., 2016. Hydrological and thermal controls of ice formation in 25 boreal stream reaches. Journal of Hydrology 540: 797–811. DOI 10.1016/j.jhydrol.2016.06.053.
  33. Magnuson J.J., Robertson D.M., Benson B.J., Wynne R.H., Livingstone D.M., Arai T., Assel R.A., Barry R.G., Card V.V., Kuusisto E., Granin N.G., Prowse T.D., Stewart K.M., Vuglinski V.S., 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289(5485): 1743–1746. DOI 10.1126/science.289.5485.1743.
  34. Mann H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 13: 245–259. DOI 10.2307/1907187.
  35. Marsz A., Styszyńska A., 2023. Non-stationary of the air temperature course over Europe – change of the thermal regime in Europe in 1987-1989 and its causes. Prace Geograficzne 170: 9–46. DOI 10.4467/20833113PG.23.001.17489.
  36. Marszelewski W., Pius B., 2016. Long-term changes in temperature of river waters in the transitional zone of the temperate climate: A case study of Polish rivers. Hydrological Sciences Journal 61(8): 1430–1442. DOI 10.1080/02626667.2015.1040800.
  37. Mostowik K., Siwek J., Kisiel M., Kowalik K., Krzysik M., Plenzler J., Rzonca B., 2019. Runoff trends in a changing climate in the Eastern Carpathians (Bieszczady Mountains, Poland). Catena 182: 104174. DOI 10.1016/j.cate-na.2019.104174.
  38. Muelchi R., Rößler O., Schwanbeck J., Weingartner R., Martius O., 2021. River runoff in Switzerland in a changing climate-Changes in moderate extremes and their seasonality. Hydrology and Earth System Sciences 25(6): 35773594. DOI 10.5194/hess-25-3577-2021.
  39. Newton A.M.W, Mullan D.J., 2021. Climate change and Northern Hemisphere lake and river ice phenology from 1931-2005. The Cryosphere 15(5): 2211–2234. DOI 10.5194/tc-15-2211-2021.
  40. North R.P., Livingstone D.M., Hari R.E., Köster O., Nieder-hauser P., Kipfer R., 2013. The physical impact of the late 1980s climate regime shift on Swiss rivers and lakes. Inland Waters 3(3): 341–350. DOI 10.5268/IW-3.3.560.
  41. Pawłowski B., 2017. Przebieg zjawisk lodowych dolnej Wisły w latach 1960-2014. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.
  42. Pekárová P., Miklánek P., Halmová D., Onderka M., Pekár J., Kučárová K., Liová S., Škoda P., 2011. Long-term trend and multi-annual variability of water temperature in the pristine Bela River basin (Slovakia). Journal of Hydrology 400(3–4): 333–340. DOI 10.1016/j.jhydrol.2011.01.048.
  43. Rajwa-Kuligiewicz A., Bojarczuk A., 2024. Evaluating the impact of climatic changes on streamflow in headwater mountain catchments with varying human pressure. An example from the Tatra Mountains (Western Carpathians). Journal of Hydrology: Regional Studies 53: 101755. DOI 10.1016/j.ejrh.2024.101755.
  44. Sen P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63(324): 1379–1389. DOI10.1080/01621459.1968.10480934.
  45. Siwek J., Mostowik K., Liova S., Rzonca B., Wacławczyk P., 2022. Baseflow trends for midsize Carpathian catchments in Poland and Slovakia in 1970-2019. Water 15(1): 1–17. DOI 10.3390/w15010109.
  46. Soja R., 2002. Hydrologiczne aspekty antropopresji w polskich Karpatach. Prace Geograficzne. Polska Akademia Nauk, Warszawa.
  47. Soja R., Wiejaczka Ł, 2014. The impact of a reservoir on the physicochemical properties of water in a mountain river. Water and Environment Journal 28(4): 473–482. DOI 10.1111/wej.12059.
  48. Stickler M., Alfredsen K.T., Linnansaari T., Fjeldstad H.P., 2010. The influence of dynamic ice formation on hydraulic heterogeneity in steep streams. River Research and Applications 26: 1187–1197. DOI 10.1002/rra.1331.
  49. Szczerbińska A., 2023. Zmienność zjawisk lodowych w dorzeczu górnej Wisły. Ph. D. thesis, Institute of Geography and Spatial Management, Jagiellonian University, Poland.
  50. Theil H., 1992. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In: Raj B., Koerts J. (eds), Henri Theil’s Contributions to Economics and Econometrics. Advanced Studies in Theoretical and Applied Econometrics, vol 23. Springer, Dordrecht. DOI 10.1007/978-94-011-2546-8_20.
  51. Thellman A., Jankowski K.J., Hayden B., Yang X., Dolan W., Smits A.P., O’Sullivan A.M., 2021. The ecology of river ice. Journal of Geophysical Research: Biogeosciences 126(9): 1–28. DOI 10.1029/2021JG006275.
  52. Viviroli D., Dürr H.H., Messerli B., Meybeck M., Weingartner R., 2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research 43: 1–13. DOI 10.1029/2006WR005653.
  53. Viviroli D., Weingartner R., 2004. The hydrological significance of mountains: From regional to global scale. Hydrology and Earth System Sciences s 8(6): 1017–1030. DOI 10.5194/hess-8-1017-2004.
  54. Wang F., Shao W., Yu H., Kan G., He X., zhang D., Ren M., Wang G., 2020. Re-evaluation of the power of the Mann–Kendall test for detecting monotonic trends in hydrometeorological time series. Frontiers in Earth Science 8(14): 1–12. DOI 10.3389/feart.2020.00014.
  55. Wasserstein R.L., Lazar N.A., 2016. The ASA statement on p-values: Context, process, and purpose. The American Statistician 70(2): 129–133. DOI 10.1080/00031305.2016.1154108.
  56. Wasserstein R.L., Schirm A.L., Lazar N.A., 2019. Moving to a world beyond “p < 0.05”. The American Statistician 73: 1–19. DOI 10.1080/00031305.2019.1583913.
  57. Wiejaczka Ł., 2011. Wpływ zbiornika wodnego ∞Klimkówka” na abiotyczne elementy środowiska przyrodniczego w dolinie Ropy. Prace Geograficzne IGiPZ PAN 229.
  58. Witkowski K., 2021. Man’s impact on the transformation of channel patterns (the Skawa River, southern Poland). River Research and Applications 37(2): 150–162. DOI 10.1002/rra.3702.
  59. Wohl E.E., 2013. Mountain rivers. Water Resources Monograph 14, American Geophysical Union, Washington DC.
  60. Yang X., Pavelsky T.M., Allen G.H., 2020. The past and future of global river ice. Nature 577(7788): 69–73. DOI 10.1038/s41586-019-1848-1.
  61. Yue S., Wang C., 2004. The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management 18(3): 201–218. DOI 10.1023/B:WARM.0000043140.61082.60.
  62. Yue S., Wang C.Y., 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resources Research 38(6): 1–7. DOI 10.1029/2001WR000861.
DOI: https://doi.org/10.14746/quageo-2025-0009 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 131 - 143
Submitted on: Jan 9, 2025
Published on: Mar 15, 2025
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Maksymilian Fukś, Łukasz Wiejaczka, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.