Have a personal or library account? Click to login
Long-Term Variability and Trends in the Characteristics of Heating Seasons in Central Europe Cover

Long-Term Variability and Trends in the Characteristics of Heating Seasons in Central Europe

Open Access
|Feb 2025

References

  1. Al-Hadhrami L.M., 2013. Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia. Renewable and Sustainable Energy Reviews 27: 305–314. DOI 10.1016/j.rser.2013.04.034.
  2. Andargie M.S., Touchie M., O’Brien W., 2019. A review of factors affecting occupant comfort in multi-unit residential buildings. Building and Environment 160: 106182. DOI 10.1016/j.buildenv.2019.106182.
  3. Andrade C., Mourato S., Ramos J., 2021. Heating and cooling degree-days climate change projections for Portugal. Atmosphere 12(6): 715. DOI 10.3390/atmos12060715.
  4. Atalla T., Gualdi S., Lanza A., 2018. A global degree days database for energy-related applications. Energy 143: 1048–1055. DOI 10.1016/j.energy.2017.10.134.
  5. Badescu V., Zamfir E., 1999. Degree-days, degree-hours and ambient temperature bin data from monthly average temperatures (in Romania). Energy Conversion and Management 40: 885–900. DOI 10.1016/S0196-8904(98)00148-4.
  6. Belova I.N., Ginzburg A.S., Krivenok L.A., 2018. Heating seasons length and degree days trends in Russian cities during last half century. Energy Procedia 149: 373–379. DOI 10.1016/j.egypro.2018.08.201.
  7. Bilgili M., Canpolat C., Pinar E., Sahin B., 2023. Analysis of heating degree-days (HDD) data using machine learning and conventional time series methods. Theoretical and Applied Climatology 154(1): 141–160. DOI 10.1007/s00704-023-04543-9.
  8. Buyukalaca O., Bulut H., Yilmaz T., 2001. Analysis of variable-base heating and cooling degree-days for Turkey. Applied Energy 69: 269–283. DOI 10.1016/S0306-2619(01)00017-4.
  9. Caia J., Jiang Z., 2008. Changing of energy consumption patterns from rural households to urban households in China: An example from Shaanxi Province, China. Renewable and Sustainable Energy Reviews 12: 1667–1680. DOI 10.1016/j.rser.2007.03.002.
  10. De Rosa M., Bianco V., Scarpa F., Tagliafico L.A., 2015. Historical trends and current state of heating and cooling degree days in Italy. Energy Conversion and Management 90: 323–335. DOI 10.1016/j.enconman.2014.11.022.
  11. Deroubaix A., Labuhn I., Camredon M., Gaubert B., Monerie P.A., Popp M., Ramarohetra J., Ruprich-Robert J., Silvers L.G., Siour G., 2021. Large uncertainties in trends of energy demand for heating and cooling under climate change. Nature Communications 12(1): 5197. DOI 10.1038/s41467-021-25504-8.
  12. EC [European Commission], 2023. Population structure in European Union. Online: ec.europa.eu/eurostat/(accessed 13 December 2023).
  13. ECA&D Database, 2023. Online: www.ecad.eu (accessed 1 September 2023).
  14. Environment Canada., 1988. Handbook on climate data sources of the atmospheric environment service. Canadian Climate Centre, Ottawa, Canada.
  15. Ewing R., Rong F., 2008. The impact of urban form on US residential energy use. Housing Policy Debate 19(1): 45–52. DOI 10.1080/10511482.2008.9521624.
  16. Harvey L.D., 2020. Using modified multiple heating-degree-day (HDD) and cooling-degree-day (CDD) indices to estimate building heating and cooling loads. Energy and Buildings 229: 110475. DOI 10.1016/j.en-build.2020.110475.
  17. Hauke J., Kossowski T., 2011. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaestiones Geographicae 30(2): 87–93. DOI 10.2478/v10117-011-0021-1.
  18. IMGW-PIB, 2023. [Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy], Baza danych. Online: danepubliczne.imgw.pl/datastore (accessed 1 September 2023).
  19. Indraganti M., Boussaa D., 2017. A method to estimate the heating and cooling degree-days for different climatic zones of Saudi Arabia. Building Services Engi-neering Research and Technology 38(3): 327–350. DOI 10.1177/0143624416681383.
  20. IPCC., 2022. Summary for policymakers. In: Pörtner H.-O., Roberts D.C., Poloczanska E.S., Mintenbeck K., Tignor M., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (eds), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 3–33. DOI 10.1017/9781009325844.001.
  21. Klein Tank A.M.G., Wijngaard J.B., Können G.P., Böhm R., Demarée G., Gocheva A., Mileta M., Pashiardis S., Hejkrlik L., Kern-Hansen C., Heino R., Bessemoulin P., Müller-Westermeier G., Tzanakou M., Szalai S., Pálsdóttir T., Fitzgerald D., Rubin S., Capaldo M., Maugeri M., Leitass A., Bukantis A., Aberfeld R., van Engelen A.F.V., Forland E., Mietus M., Coelho F., Mares C., Razuvaev V., Nieplova E., Cegnar T., López J.A., Dahlström B., Moberg A., Kirchhofer W., Ceylan A., Pachaliuk O., Alexander L.V., Petrovic P., 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology 22(12): 1441–1453. DOI 10.1002/joc.773.
  22. Kodah Z.H., El-Shaarawi M.A.I., 1990. Weather data in Jordan for conventional and solar HVAC systems. ASHRAE Transactions 96(1): 124–131.
  23. Kohler M., Blond N., Clappier A., 2016. A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France). Applied Energy 184: 40–54. DOI 10.1016/j.apenergy.2016.09.075.
  24. Kolokotroni M., Ren X., Davies M., Mavrogianni A., 2012. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build 47: 302–311. DOI 10.1016/j.enbuild.2011.12.019.
  25. Kożuchowski K. (ed), 2000. Pory roku w Polsce. Sezonowe zmiany w środowisku a wieloletnie zmiany klimatyczne. Łodź.
  26. Li Y., Li J., Xu A., Feng Z., Hu C., Zhao G., 2021. Spatial-temporal changes and associated determinants of global heating degree days. International Journal of Environmental Research and Public Health 18(12): 6186. DOI 10.3390/ijerph18126186.
  27. Liu D., Zhao F.Y., Tang G.F., 2010. Active low-grade energy recovery potential for building energycon servation. Renewable and Sustainable Energy Reviews 14(9): 2736–2747. DOI 10.1016/j.rser.2010.06.005.
  28. Livada I., Pyrgou A., Haddad S., Sadeghi M., Santamouris M., 2021. Recent climatic trends and analysis of monthly heating and cooling degree hours in Sydney. Climate 9(9): 114. DOI 10.3390/CLI9070114.
  29. MacDonald H., Pedlar J., McKenney D.W., Lawrence K., de Boer K., Hutchinson M.F., 2023. Heating degree day spatial datasets for Canada. Data in Brief 49: 109450. DOI 10.1016/j.dib.2023.109450.
  30. Magli S., Lodi C., Lombroso L., Muscio A., Teggi S., 2015. Analysis of the urban heat island effects on building energy consumption. International Journal of Energy and Environmental Engineering 6: 91–99. DOI 10.1007/s40095-014-0154-9.
  31. Mourshed M., 2011. The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh. Applied Energy 88: 3737– 3746. DOI 10.1016/j.apenergy.2011.05.024.
  32. Moustris K.P., Nastos P.T., Bartzokas A., Larissi I.K., Zacha-ria P.T., Paliatsos A.G., 2015. Energy consumption based on heating/cooling degree days within the urban environment of Athens, Greece. Theoretical and Applied Climatology 122: 517–529. DOI 10.1007/s00704-014-1308-7.
  33. Oke T.R., 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108(455): 1–24. DOI 10.1002/qj.49710845502.
  34. Oke T.R., Johnson G.T., Steyn D.G., Watson I.D., 1991. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Boundary-Layer Meteoroloy 56: 339–358. DOI 10.1007/BF00119211.
  35. Oke T.R., Mills G., Christen A., Voogt J.A., 2017. Urban climates. Cambridge University Press, Cambridge, UK, ISBN: 978-1-107-42953-6.
  36. Ortiz Beviá M.J., Sánchez-López G., Alvarez-Garcìa F.J., Ruizde Elvira A., 2012. Evolution of heating and cooling degree-days in Spain: Trends and interannual variability. Global and Planetary Change 92–93: 236–247. DOI 10.1016/j.gloplacha.2012.05.023.
  37. Papakostas K., Kyriakis N., 2005. Heating and cooling degree-hours for Athens and Thessaloniki, Greece. Renewable Energy 30(12): 1873–1880. DOI 10.1016/j. renene.2004.12.002.
  38. Papakostas K., Mavromatis T., Kyriakis N., 2010. Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renewable Energy 35: 1376–1379. DOI 10.1016/j. renene.2009.11.012.
  39. Petri Y., Caldeira K., 2015. Impacts of global warming on residential heating and cooling degree-days in the United States. Scientific Reports 5(1): 12427. DOI 10.1038/srep12427.
  40. Ramon D., Allacker K., De Troyer F., Wouters H., van Lipzig N.P., 2020. Future heating and cooling degree days for Belgium under a high-end climate change scenario. Energy Build 216: 109935. DOI 10.1016/j.enbuild.2020.109935.
  41. Sadeqi A., Tabari H., Dinpashoh Y., 2022. Spatio-temporal analysis of heating and cooling degree-days over Iran. Stochastic Environmental Research and Risk Assessment 36: 869–891. DOI 10.1007/s00477-021-02064-3.
  42. Santamouris M., Papnikolaou N., Livada I., Koronakis I., Georgakis C., Argiriou A., Assimakopoulos D.N., 2001. On the impact of urban climate on the energy consumption of buildings. Solar Energy 70(3): 201–216. DOI 10.1016/S0038-092X(00)00095-5.
  43. Shen X., Liu B., 2016. Changes in timing, length and heating degree days of the heating season in central heating zone of China. Scientific Reports 6: 33384. DOI 10.1038/srep33384.
  44. Shen X., Liu B., Zhou D., 2017. Spatiotemporal changes in the length and heating degree days of the heating period in Northeast China. Meteorological Applications 24(1): 135–141. DOI 10.1002/met.1612.
  45. Spinoni J., Vogt J.V., Barbosa P., Dosio A., McCormick N., Bigano A., Füssel H.-M., 2018. Changes of heating and cooling degree-days in Europe from 1981 to 2100. International Journal of Climatology 38: e191–e208. DOI 10.1002/joc.5362.
  46. Szyga-Pluta K., Tomczyk A., Piniewski M., Eini M., 2023b. Past and future changes in the start, end, and duration of the growing season in Poland. Acta Geophysica 71: 3041– 3055. DOI 10.1007/s11600-023-01117-1.
  47. Szyga-Pluta K., Tomczyk A., Piotrowicz K., Bednorz E., 2023a. Patterns in the multiannual course of growing season in Central Europe since the end of the 19th century. Quaestiones Geographicae 42(1): 59–74. DOI 10.14746/quageo-2023-0005.
  48. Szyga-Pluta K., Tomczyk A.M., Bednorz E., Piotrowicz K., 2022. Assessment of climate variations in the growing period in Central Europe since the end of eighteenth century. Theoretical and Applied Climatology 149: 1785–1800. DOI 10.1007/s00704-022-04141-1.
  49. Ukey R., Rai A.C., 2021. Impact of global warming on heating and cooling degree days in major Indian cities. Energy and Buildings 244: 111050. DOI 10.1016/j.enbuild.2021.111050.
  50. Ustrnul Z., Wypych A., Czekierda D., 2021. Air temperature change. In: Falarz M. (ed.), Climate change in Poland. Springer Climate. Springer, Cham: 275–330. DOI 10.1007/978-3-030-70328-8_11.
  51. Verbai Z., Lazar I., Kalmar F., 2014. Heating degree day in Hungary. Environmental Engineering and Management Journal 13(11): 2887–2892. DOI 10.30638/eemj.2014.325.
  52. Wątroba J., 2007. Przykład statystycznej analizy danych z wykorzystaniem nowych możliwości Statistica 8. In: Wątroba J. (ed.), Zastosowania statystyki i data mining w badaniach naukowych. StatSoft Polska, Kraków: 51–60.
  53. Wibig J., 2003. Heating degree days and cooling degree days variability in Łódź in the period1931-2000. In: Kłysik K., Oke T.R., Fortuniak K., Grimmond C.S.B., Wibig J. (eds), Fifth International Conference on Urban Climate, 1–5 September 2003. Łódź, Poland. Proceedings 2: 471–474.
  54. Wibig J., Głowicki B., 2002. Trends of minimum and maximum temperature in Poland. Climate Research 20: 123– 133. DOI 10.3354/cr020123.
DOI: https://doi.org/10.14746/quageo-2025-0005 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 71 - 84
Submitted on: Nov 1, 2024
Published on: Feb 7, 2025
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2025 Katarzyna Szyga-Pluta, Katarzyna Piotrowicz, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.