Have a personal or library account? Click to login
Progress in Arctic Coastal Geomorphological Research in Times of Rapid Climate Warming Cover

Progress in Arctic Coastal Geomorphological Research in Times of Rapid Climate Warming

Open Access
|Mar 2024

References

  1. Aga J., Piermattei L., Girod L., Aalstad K., Eiken T., Kääb A., Westermann S.,2023. Coastal retreat rates of high-Arctic rock cliffs on Brøgger peninsula, Svalbard, accelerate during the past decade. EGUsphere, Preprint repository. DOI 10.5194/egusphere-2023-321.
  2. Alley R.B., Cuffey K.M., Bassis J.N., Alley K.E., Wang S., Parizek B.R., Anandakrishnan S., Christianson K., Deconto R.M., 2023. Iceberg Calving: Regimes and Transitions. Annual Review of Earth and Planetary Sciences 51: 189–215. DOI 10.1146/annurev-earth-032320.
  3. Amundson J.M., Clinton J.F., Fahnestock M., Truffer M., Lüthi M.P., Motyka R.J., 2012. Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland. Annals of Glaciology 53(60): 79–84. DOI 10.3189/2012/AoG60A200.
  4. Amundson J.M., Truffer M., Lüthi M.P., Fahnestock M., West M., Motyka R.J., 2008. Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland’, Geophysical Research Letters, 35(22). DOI 10.1029/2008GL035281.
  5. Aström J.A., Vallot D., Schäfer M., Welty E.Z., O’Neel S., Bartholomaus T.C., Liu Y., Riikilä T.I., Zwinger T., Timonen J., Moore J.C., 2014. Termini of calving glaciers as self-organized critical systems. Nature Geoscience 7(12): 874–878. DOI 10.1038/ngeo2290.
  6. Baichtal J.F., Lesnek A.J., Carlson R.J., Schmuck N.S., Smith J.L., Landwehr D.J., Briner J.P., 2021. Late Pleistocene and early Holocene sea-level history and glacial retreat interpreted from shell-bearing marine deposits of southeastern Alaska, USA. Geosphere 17(6): 1590–1615. DOI 10.1130/GES02359.1.
  7. Ballantyne C.K., 2002. Paraglacial geomorphology. Quaternary Science Reviews 21(18-19): 1935–2017. DOI 10.1016/ S0277-3791(02)00005-7.
  8. Ballinger T.J., Overland J.E., Wang M., Bhatt U.S., Hanna E., Hanssen-Bauer I., Kim S-J., Thoman R.L., Walsh J.E., 2020. Arctic Report Card 2020. DOI 10.25923/gcw8-2z06.
  9. Baranskaya A.V., Khan N.S., Romanenko F.A., Roy K., Peltier W.R., Horton B.P., 2018. A postglacial relative sea-level database for the Russian Arctic coast. Quaternary Science Reviews 199: 188–205. DOI 10.1016/j.quasci-rev.2018.07.033.
  10. Barnhart K.R., Miller C.R., Overeem I., Kay J.E., 2016. Mapping the future expansion of Arctic open water. Nature Climate Change 6(3): 280–285. DOI 10.1038/nclimate2848.
  11. Bauch H.A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V.V., 2001. Chronology of the Holocene transgression at the North Siberian margin. Global and Planetary Change 31: 125–139.
  12. Belova N.G., Ogorodov S.A., Shabanova N.N., Maslakov A,A, 2019. Coastal retreat at Kharasaveyskoye gas and condensate field area, Kara Sea, Russia since 1970s. In: IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing. DOI 10.1088/17551315/324/1/012027.
  13. Bendixen M., Kroon A., 2017. Conceptualizing delta forms and processes in Arctic coastal environments. Earth Surface Processes and Landforms 42(8): 1227–1237. DOI 10.1002/esp.4097.
  14. Bendixen M., Lønsmann I.L., Anker B.A., Elberling B., West-ergaard-Nielsen A., Overeem I., Barnhart K.R., Khan A.S., Box J.E., Abermann J., Langley K., Kroon A., 2017. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550(7674): 101–104. DOI 10.1038/nature23873.
  15. Benjamin J., Rosser N.J., Dunning S.A., Hardy R.J., Kelfoun K., Szczuciński W., 2018. Transferability of a calibrated numerical model of rock avalanche run-out: Application to 20 rock avalanches on the Nuussuaq Peninsula, West Greenland. Earth Surface Processes and Landforms 43(15): 3057–3073. DOI 10.1002/esp.4469.
  16. Benn D.I., Warren C.R., Mottram R.H., 2007. Calving processes and the dynamics of calving glaciers. Earth-Science Reviews 82(3–4): 143–179. DOI 10.1016/j.earscirev.2007.02.002.
  17. Bennike O., Wagner B., Richter A., 2011. Relative sea level changes during the Holocene in the Sisimiut area, south-western Greenland. Journal of Quaternary Science 26(4): 353–361. DOI 10.1002/jqs.1458.
  18. Berry H.B., Whalen D., Lim M., 2021. Long-term ice-rich permafrost coast sensitivity to air temperatures and storm influence: lessons from Pullen Island, Northwest Territories, Canada. Arctic Science 7(4): 723–745. DOI 10.1139/as-2020-0003.
  19. Bigg G.R., Wilton D.J., 2014. Iceberg risk in the Titanic year of 1912: Was it exceptional? Weather 69(4): 100–104. DOI 10.1002/wea.2238.
  20. Bogen J., Bønsnes T.E. 2003. Erosion and sediment transport in High Arctic rivers, Svalbard. Polar Research 22(2): 175– 189. DOI 10.1111/j.1751-8369.2003.tb00106.x.
  21. Boisson A., Allard M., Sarrazin D., 2020. Permafrost aggradation along the emerging eastern coast of Hudson Bay, Nunavik (northern Québec, Canada). Permafrost and Periglacial Processes 31(1): 128–140. DOI 10.1002/ppp.2033.
  22. Bolshiyanov D., Makarov A., Savelieva L., 2015. Lena River delta formation during the Holocene. Biogeosciences 12(2): 579–593. DOI 10.5194/bg-12-579-2015.
  23. Bourriquen M., Mercier D., Baltzer A., Fournier J., Costa S., Roussel E., 2018. Paraglacial coasts responses to glacier retreat and associated shifts in river floodplains over decadal timescales (1966–2016), Kongsfjorden, Svalbard. Land Degradation and Development 29(11): 4173–4185. DOI 10.1002/ldr.3149.
  24. Box J.E., Hubbard A., Bahr D.B., Colgan W.T., Fettweis X., Mankoff K.D., Wehrlé A., Noël B., van den Broeke M.R., Wouters B., Bjørk A.A., Fausto R.S., 2022. Greenland ice sheet climate disequilibrium and committed sea-level rise. Nature Climate Change 12: 808–813. DOI 10.1038/s41558-022-01441-2.
  25. Brigham-Grette J., Hopkins D.M., 1995. Emergent Marine Record and Paleoclimate of the Last Interglaciation along the Northwest Alaskan Coast. Quaternary Research 43(2): 159–173. DOI 10.1006/QRES.1995.1017.
  26. Brückner H., Schellmann G., Van Der Borg K., 2002. Uplifted Beach Ridges in Northern Spitsbergen as Indicators for Glacio-Isostasy and Palaeo-Oceanography. Zeitschrift fur Geomorphologie 46(3): 309–336. DOI 10.1127/zfg/46/2002/309.
  27. Buchwał A., Szczuciński W., Strzelecki M.C., Long A.J., 2015. New insights into the 21 November 2000 tsunami in West Greenland from analyses of the tree-ring structure of Salix glauca. Polish Polar Research 36(1): 51–65. DOI 10.1515/popore-2015-0005.
  28. Carrington D., 2017. Arctic stronghold of world’s seeds flooded after permafrost melts. Online: www.theguardian.com/environment/2017/may/19/arctic-strong-hold-of-worlds-seeds-flooded-after-permafrost-melts (accessed 14 December 2023).
  29. Casas-Prat M., Wang X.L., 2020. Sea Ice Retreat Contributes to Projected Increases in Extreme Arctic Ocean Surface Waves. Geophysical Research Letters 47(15). DOI 10.1029/2020GL088100.
  30. Chan N.H., Langer M., Juhls B., Rettelbach T., Overduin P., Huppert K., Braun J., 2023. An Arctic delta reduced-complexity model and its reproduction of key geomorphological structures. Earth Surface Dynamics 11(2): 259–285. DOI 10.5194/esurf-11-259-2023.
  31. Cossart E., Mercier D., Decaulne A., Feuillet T. 2013. An overview of the consequences of paraglacial landsliding on deglaciated mountain slopes: Typology, timing and contribution to cascading fluxes. Quaternaire 24(1): 13–24. DOI 10.4000/quaternaire.6444.
  32. Dahl-Jensen T., Larsen L.M., Pedersen S.S.A., Pedersen J., Jepsen H.F., Pedersen K.G., Nielsen T., Pedersen A., Von Platen-Hallermund F., Weng W., 2004. Landslide and Tsunami 21 November 2000 in Paatuut, West Greenland. Natural Hazards 31: 277–287.
  33. De Vernal A., Hillaire-Marcel C., Rochon A., Fréchette B., Henry M., Solignac S., Bonnet S., 2013. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews 79: 111–121. DOI 10.1016/j.quascirev.2013.07.006.
  34. de Wet G.A., Balascio N.L., D’Andrea W.J., Bakke J., Bradley R.S., Perren B., 2018. Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amster-damøya, NW Svalbard. Quaternary Science Reviews 183: 188–203. DOI 10.1016/j.quascirev.2017.03.018.
  35. Dobiński W., 2011. Permafrost. Earth-Science Reviews 108(3– 4): 158–169. DOI 10.1016/j.earscirev.2011.06.007.
  36. Drachev S.S., Kaul N., Beliaev V.N., 2003. Eurasia spreading basin to Laptev Shelf transition: structural pattern and heat flow. Geophysical Journal International 152(3): 688– 698. DOI 10.1046/j.1365-246X.2003.01882.x.
  37. Duprat L.P.A.M., Bigg G.R., Wilton D.J., 2016. Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nature Geoscience 9(3): 219–221. DOI 10.1038/ngeo2633.
  38. Dutton A., Carlson A.E., Long A.J., Milne G.A., Clark P.U., DeConto R., Horton B.P., Rahmstorf S., Raymo M.E., 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349(6244). DOI 10.1126/science.aaa4019.
  39. Dyke A.S., Andrews J.T., Clark P.U., England J.H., Miller G.H., Shaw J., Veillette J.J., 2002. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews 21: 9–31.
  40. Dyke A.S., Peltier W.R., 2000. Forms, response times and variability of relative sea-level curves, glaciated North America. Geomorphology 32: 315–333.
  41. England J., Atkinson N., Bednarski J., Dyke A.S., Hodgson D.A., Cofaigh Ó.C., 2006. The Innuitian Ice Sheet: configuration, dynamics and chronology. Quaternary Science Reviews 25(7–8): 689–703. DOI 10.1016/j.quasci-rev.2005.08.007.
  42. England J.H., Furze M.F.A., Doupé J.P., 2009. Revision of the NW Laurentide Ice Sheet: implications for paleoclimate, the northeast extremity of Beringia, and Arctic Ocean sedimentation. Quaternary Science Reviews 28(17–18): 1573–1596. DOI 10.1016/j.quascirev.2009.04.006.
  43. Erikson L.H., Gibbs A.E., Richmond B.M., Storlazzi C.D., Jones B.M., Ohman K.A., 2020. Changing Storm Conditions in Response to Projected 21st Century Climate Change and the Potential Impact on an Arctic Barrier Island–Lagoon System—A Pilot Study for Arey Island and Lagoon, Eastern Arctic Alaska. U.S. Geological Survey Open-File Report 2020–1142. DOI 10.5066/P9LGYO2Q.
  44. Farquharson L., Mann D., Rittenour T., Groves P., Grosse G., Jones B., 2018. Alaskan marine transgressions record out-of-phase Arctic Ocean glaciation during the last interglacial. Geology 46(9): 783–786. DOI 10.1130/G40345.1.
  45. Fedje D., Lausanne A., McLaren D., Mackie Q., Menounos B., 2021. Slowstands, stillstands and transgressions: Paleoshorelines and archaeology on Quadra Island, BC, Canada. Quaternary Science Reviews 270. DOI 10.1016/j. quascirev.2021.107161.
  46. Fischer H., Meissner K.J., Mix A.C., Abram N.J., Austermann J., Brovkin V., Capron E., Colombaroli D., Daniau A.L., Dyez K.A., Felis T., Finkelstein S.A., Jaccard S.L., McClymont E.L., Rovere A., Sutter J., Wolff E.W., Affolter S., Bakker P., Ballesteros-Cánovas J.A., Barbante C., Caley T., Carlson A.E., Churakova O., Cortese G., Cumming B.F., Davis B.A.S., De Vernal A., Emile-Geay J., Fritz S.C., Gierz P., Gottschalk J., Holloway M.D., Joos F., Kucera M., Loutre M.F., Lunt D.J., Marcisz K., Marlon J.R., Martinez P., Masson-Delmotte V., Nehrbass-Ahles C., Ot-to-Bliesner B.L., Raible C.C., Risebrobakken B., Sánchez Goñi M.F., Arrigo J.S., Sarnthein M., Sjolte J., Stocker T.F., Velasquez Alvárez P.A., Tinner W., Valdes P.J., Vogel H., Wanner H., Yan Q., Yu Z., Ziegler M., Zhou L., 2018. Palaeoclimate constraints on the impact of 2°C anthropogenic warming and beyond. Nature Geoscience 11(7): 474–485. DOI 10.1038/s41561-018-0146-0.
  47. Forbes D.L. (ed.), 2011. State of the Arctic Coast 2010 – Scientific Review and Outlook. International Arctic Science Committee, Land-Ocean Interactions in the Coastal Zone, Arctic Monitoring and Assessment Programme, International Permafrost Association. Helmholtz-Zentrum, Geesthacht, Germany. Online: arcticcoasts.org (accessed 4 January 2024).
  48. Ford J.D., Couture N., Bell T., Clark D.G., 2018. Climate change and Canada’s north coast: Research trends, progress, and future directions. Environmental Reviews 26(1): 82–92. DOI 10.1139/er-2017-0027.
  49. Forman S.L., 1990. Post-glacial relative sea-level history of northwestern Spitsbergen, Svalbard. Geological Society of America Bulletin 102: 1580–1590.
  50. Forman S.L., Lubinski D.J., Ingólfsson Ó., Zeeberg J.J., Snyder J.A., Siegert M.J., Matishov G.G., 2004. A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quaternary Science Reviews 23(11–13): 1391–1434. DOI 10.1016/j.quasci-rev.2003.12.007.
  51. Fraley K.M., Robards M.D., Rogers M.C., Vollenweider J., Smith B., Whiting A., Jones T., 2021. Freshwater input and ocean connectivity affect habitats and trophic ecology of fishes in Arctic coastal lagoons. Polar Biology 44(7): 1401–1414. DOI 10.1007/s00300-021-02895-4.
  52. Funder S., Goosse H., Jepsen H., Kaas E., Kjær K.H., Korsgaard N.J., Larsen N.K., Linderson H., Lyså A., Möller P., Olsen J., Willerslev E., 2011. A 10,000-year record of Arctic Ocean Sea-ice variability – View from the beach. Science 333(6043): 747–750. DOI 10.1126/science.1202760.
  53. Gauthier D., Anderson S.A., Fritz H.M., Giachetti T., 2018. Karrat Fjord (Greenland) tsunamigenic landslide of 17 June 2017: initial 3D observations. Landslides 15(2): 327– 332. DOI 10.1007/s10346-017-0926-4.
  54. Geyman E.C., van Pelt W.J. J., Maloof A.C., Aas H.F., Kohler J., 2022. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature 601(7893): 374–379. DOI 10.1038/s41586-021-04314-4.
  55. Gibbs A.E., Erikson L.H., Jones B.M., Richmond B.M., Engelstad A.C., 2021. Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs. Remote Sensing 13(21). DOI 10.3390/rs13214420.
  56. Gibbs A.E., Richmond B.M., 2017. National Assessment of Shoreline Change—Summary Statistics for Updated Vector Shorelines and Associated Shoreline Change Data for the North Coast of Alaska, U.S.-Canadian Border to Icy Cape. U.S. Geological Survey Open-File Report 2017–1107. DOI 10.3133/ofr20171107.
  57. Gibbs A.E., Snyder A.G., Richmond B.M., 2019. National Assessment of Shoreline Change—Historical Shoreline Change Along the North Coast of Alaska, Icy Cape to Cape Prince of Wales. U.S. Geological Survey Open-File Report 2019–1146. DOI 10.3133/ofr20191146.
  58. Goslin J., Fruergaard M., Sander L., Gałka M., Menviel L., Monkenbusch J., Thibault N., Clemmensen L.B., 2018. Holocene centennial to millennial shifts in North-Atlantic storminess and ocean dynamics. Scientific Reports 8(1). DOI 10.1038/s41598-018-29949-8.
  59. Grabiec M., Ignatiuk D., Jania J.A., Moskalik M., Głowacki P., Błaszczyk M., Budzik T., Walczowski W., 2018. Coast formation in an Arctic area due to glacier surge and retreat: The Hornbreen–Hambergbreen case from Spitsbergen. Earth Surface Processes and Landforms 43(2): 387–400. DOI 10.1002/esp.4251.
  60. Gray J., Lauriol B., Bruneau D., Ricard J., 1993. Postglacial emergence of Ungava Peninsula, and its relationship to glacial history. Canadian Journal of Earth Science 30: 1676– 1696. Online: www.nrcresearchpress.com (accessed 23 April 2023).
  61. Gray J.T., Lauriol B., 1985. Dynamics of the Late Wisconsin Ice Sheet in the Ungava Peninsula Interpreted from Geomorphological Evidence. Arctic and Alpine Research 17(3): 289–310.
  62. Hamilton A.I., Gibbs A.E., Erikson L.H., Engelstad A.C., 2021. Assessment of Barrier Island Morphological Change in Northern Alaska. U.S. Geological Survey Open-File Report 2021–1074. DOI 10.3133/ofr20211074.
  63. Haug F., Myhre P., 2016. Naturtyper på Svalbard– laguner og pollers betydning, med katalog over lokaliteter, Norsk Polar-institutt, Tromsø.
  64. Higman B., Shugar D.H., Stark C.P., Ekström G., Koppes M.N., Lynett P., Dufresne A., Haeussler P.J., Geertsema M., Gulick S., Mattox A., Venditti J.G., Walton M.A.L., McCall N., Mckittrick E., MacInnes B., Bilderback E.L., Tang H., Willis M.J., Richmond B., Reece R.S., Larsen C., Olson B., Capra J., Ayca A., Bloom C., Williams H., Bonno D., Weiss R., Keen A., Skanavis V., Loso M., 2018. The 2015 landslide and tsunami in Taan Fiord, Alaska. Scientific Reports 8(1). DOI 10.1038/s41598-018-30475-w.
  65. Himmelstoss E.A., Henderson R.E., Kratzmann M.G., Farris A.S., 2021. Digital Shoreline Analysis System (DSAS) Version 5.1 User Guide. U.S. Geological Survey Open-File Report 2021–1091. DOI 10.3133/ofr20211091.
  66. Hjort J., Karjalainen O., Aalto J., Westermann S., Romanovsky V.E., Nelson F.E., Etzelmüller B., Luoto M., 2018. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications 9(1). DOI 10.1038/s41467-018-07557-4.
  67. Hogan K.A., Dowdeswell J.A., Noormets R., Evans J., Co-faigh Ó.C., 2010. Evidence for full-glacial flow and retreat of the Late Weichselian Ice Sheet from the waters around Kong Karls Land, eastern Svalbard. Quaternary Science Reviews 29(25–26): 3563–3582. DOI 10.1016/j. quascirev.2010.05.026.
  68. Hole G.M., Rawson T., Farnsworth W.R., Schomacker A., In-gólfsson Ó., Macias-Fauria M., 2021. A Driftwood-Based Record of Arctic Sea Ice During the Last 500 Years From Northern Svalbard Reveals Sea Ice Dynamics in the Arctic Ocean and Arctic Peripheral Seas. Journal of Geophysical Research: Oceans 126(10). DOI 10.1029/2021JC017563.
  69. Hormes A., Akçar N., Kubik P.W., 2011. Cosmogenic radio-nuclide dating indicates ice-sheet configuration during MIS 2 on Nordaustlandet, Svalbard. Boreas 40(4): 636– 649. DOI 10.1111/j.1502-3885.2011.00215.x.
  70. Huss M., Hock R., 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change 8(2): 135–140. DOI 10.1038/s41558-017-0049-x.
  71. Ingólfsson Ó., Landvik J.Y., 2013. The Svalbard-Barents Sea ice-sheet – Historical, current and future perspectives. Quaternary Science Reviews 64: 33–60. DOI 10.1016/j.quas-cirev.2012.11.034.
  72. Irrgang A.M., Bendixen M., Farquharson L.M., Baranskaya A.V., Erikson L.H., Gibbs A.E., Ogorodov S.A., Over-duin P.P., Lantuit H., Grigoriev M.N., Jones B.M., 2022. Drivers, dynamics and impacts of changing Arctic coasts. Nature Reviews Earth and Environment 3(1): 39–54. DOI 10.1038/s43017-021-00232-1.
  73. Irrgang A.M., Lantuit H., Gordon R.R., Piskor A., Manson G.K., 2019. Impacts of past and future coastal changes on the Yukon coast — threats for cultural sites, infrastructure, and travel routes. Arctic Science 5(2): 107–126. DOI 10.1139/as-2017-0041.
  74. Irrgang A.M., Lantuit H., Manson G.K., Günther F., Grosse G., Overduin P.P., 2018. Variability in Rates of Coastal Change Along the Yukon Coast, 1951 to 2015. Journal of Geophysical Research: Earth Surface 123(4): 779–800. DOI 10.1002/2017JF004326.
  75. Isaksen K., Nordli O., Førland E.J., Łupikasza E., Eastwood S., Niedźwiedź T., 2016. Recent warming on Spitsbergen—Influence of atmospheric circulation and sea ice cover. Journal of Geophysical Research 121(20): 11913–11931. DOI 10.1002/2016JD025606.
  76. Jackson M.G., Oskarsson N., Trønnes R.G., McManus J.F., Oppo D.W., Grönvold K., Hart S.R., Sachs J.P., 2005. Holocene loess deposition in Iceland: Evidence for millenial-scale atmosphere-ocean coupling in the North Atlantic. Geology 33(6): 509–512. DOI 10.1130/G21489.1.
  77. Jahn A., 1961. Quantitative analysis of some periglacial processes in Spitsbergen. Zeszyty Naukowe Uniwersytetu Wrocławskiego, Nauka o Ziemi II/Geophysics, Geography, Geology II B(5): 3–54.
  78. James T.S., Henton J.A., Leonard L.J., Darlington A., Forbes D.L., Craymer M., 2014. Relative Sea-level Projections in Canada and the Adjacent Mainland United States. Geological Survey of Canada Open File 7737. DOI 10.4095/295574.
  79. Jarosz K., Zagórski P., Moskalik M., Lim M., Rodzik J., Mędrek K., 2022. A New Paraglacial Typology of High Arctic Coastal Systems: Application to Recherchefjorden, Svalbard. Annals of the American Association of Geographers 112(1): 184–205. DOI 10.1080/24694452.2021.1898323.
  80. Jaskólski M.W., 2021. Challenges and perspectives for human activity in Arctic coastal environments – a review of selected interactions and problems. Miscellanea Geographica 25(2): 127–143. DOI 10.2478/mgrsd-2020-0036.
  81. Jaskólski M.W., Pawłowski Ł., Strzelecki M., 2017. Assessment of geohazards and coastal change in abandoned Arctic town, Pyramiden, Svalbard. In Rachlewicz G. (ed.), Cryosphere reactions against the background of environmental changes in contrasting high-Arctic conditions in Svalbard. Bogucki Wydawnictwo Naukowe, Poznań: 51–64
  82. Jones B.M., Arp C.D., Jorgenson M.T., Hinkel K.M., Schmutz J.A., Flint P.L., 2009. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters 36(3). DOI 10.1029/2008GL036205.
  83. Jones B.M., Farquharson L.M., Baughman C.A., Buzard R.M., Arp C.D., Grosse G., Bull D.L., Günther F., Nitze I., Urban F., Kasper J.L., Frederick J.M., Thomas M., Jones C., Mota A., Dallimore S., Tweedie C., Maio C., Mann D.H., Richmond B., Gibbs A., Xiao M., Sachs T., Iwahana G., Kanevskiy M., Romanovsky V.E., 2018. A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environmental Research Letters 13(11). DOI 10.1088/1748-9326/aae471.
  84. Jones B.M., Irrgang A.M., Farquharson L.M., Lantuit H., Whalen D., Ogorodov S., Grigoriev M., Tweedie C., Gibbs A.E., Strzelecki M.C., Baranskaya A., Belova N., Sinitsyn A., Kroon A., Maslakov A., Vieira G., Grosse G., Overduin P., Nitze I., Maio C., Overbeck J., Bendixen M., Zagórski P., Romanovsky V.E., 2020. Arctic Report Card 2020. NOAA. DOI 10.25923/e47w-dw52.
  85. Kargel J., Bush A., Leonard G., 2013. Arctic Warming and Sea Ice Diminution Herald Changing Glacier and Cryospheric Hazard Regimes. Geophysical Research Abstracts.
  86. Kavan J., Strzelecki M.C., 2023. Glacier decay boosts the formation of new Arctic coastal environments—Perspectives from Svalbard. Land Degradation and Development. DOI 10.1002/ldr.4695.
  87. Kavan J., Tallentire G.D., Demidionov M., Dudek J., Strzelecki M.C., 2022. Fifty Years of Tidewater Glacier Surface Elevation and Retreat Dynamics along the South-East Coast of Spitsbergen (Svalbard Archipelago). Remote Sensing 14(2). DOI 10.3390/rs14020354.
  88. Khan N.S., Horton B.P., Engelhart S., Rovere A., Vacchi M., Ashe E.L., Törnqvist T.E., Dutton A., Hijma M.P., Shennan I., 2019. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quaternary Science Reviews 220: 359–371. DOI 10.1016/j.quascirev.2019.07.016.
  89. Kim Y.H., Min S.K., Gillett N.P., Notz D., Malinina E., 2023. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario. Nature Communications 14(1). DOI 10.1038/s41467-023-38511-8.
  90. Klemann V., Heim B., Bauch H.A., Wetterich S., Opel T., 2015. Sea-level evolution of the Laptev Sea and the East Siberian Sea since the last glacial maximum. Impact of glacial isostatic adjustment. Arktos 1(1). DOI 10.1007/s41063-015-0004-x.
  91. Kochtitzky W., Copland L., 2022. Retreat of Northern Hemisphere Marine-Terminating Glaciers, 2000–2020. Geophysical Research Letters 49(3). DOI 10.1029/2021GL096501.
  92. Korsgaard N.J., Svennevig K., Søndergaard A.S., Luetzen-burg G., Oksman M., Larsen N.K., 2023. Giant mid-Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland. Natural Hazards and Earth Systems Sciences. DOI 10.5194/nhess-2023-32.
  93. Kylander M.E., Martínez-Cortizas A., Sjöström J.K., Gåling J., Gyllencreutz R., Bindler R., Alexanderson H., Schenk F., Reinardy B.T.I., Chandler B.M.P., Gallagher K., 2023. Storm chasing: Tracking Holocene storminess in southern Sweden using mineral proxies from inland and coastal peat bogs. Quaternary Science Reviews 299. DOI 10.1016/j.quascirev.2022.107854.
  94. Lajeunesse P., Allard M., 2002. Sedimentology of an ice-contact glaciomarine fan complex, Nastapoka Hills, eastern Hudson Bay, northern Quebec. Sedimentary Geology 152: 201–220.
  95. Lambeck K., Rouby H., Purcell A., Sun Y., Sambridge M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America 111(43): 15296–15303. DOI 10.1073/pnas.1411762111.
  96. Lantuit H., Atkinson D., Overduin P.P., Grigoriev M., Rachold V., Grosse G., Hubberten H.W., 2011a. Coastal erosion dynamics on the permafrost-dominated Bykovsky Peninsula, north Siberia, 1951-2006. Polar Research 30(1). DOI 10.3402/polar.v30i0.7341.
  97. Lantuit H., Overduin P.P., Couture N., Wetterich S., Aré F., Atkinson D., Brown J., Cherkashov G., Drozdov D., Forbes D.L., Graves-Gaylord A., Grigoriev M., Hubberten H.W., Jordan J., Jorgenson T., Ødegård R.S., Ogorodov S., Pollard W.H., Rachold V., Sedenko S., Solomon S., Steenhuisen F., Streletskaya I., Vasiliev A., 2011b. The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. Estuaries and Coasts 35(2): 383–400. DOI 10.1007/s12237-010-9362-6.
  98. Lantuit H., Pollard W.H., 2008. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 95(1–2): 84–102. DOI 10.1016/j.geomorph.2006.07.040.
  99. Lantuit H., Pollard W.H., Couture N., Fritz M., Schirrmeister L., Meyer H., Hubberten H.W., 2012. Modern and Late Holocene Retrogressive Thaw Slump Activity on the Yukon Coastal Plain and Herschel Island, Yukon Territory, Canada. Permafrost and Periglacial Processes 23(1): 39–51. DOI 10.1002/ppp.1731.
  100. Lavoie C., Allard M., Duhamel D., 2012. Deglaciation landforms and C-14 chronology of the Lac Guillaume-Delisle area, eastern Hudson Bay: A report on field evidence. Geomorphology 159–160: 142–155. DOI 10.1016/j.geomorph.2012.03.015.
  101. Lecavalier B.S., Milne G.A., Simpson M.J.R., Wake L., Huybrechts P., Tarasov L., Kjeldsen K.K., Funder S., Long A.J., Woodroffe S., Dyke A.S., Larsen N.K., 2014. A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quaternary Science Reviews 102: 54–84. DOI 10.1016/j.quasci-rev.2014.07.018.
  102. Lee S., 2014. A theory for polar amplification from a general circulation perspective. Asia-Pacific Journal of Atmospheric Sciences 50(1): 31–43. DOI 10.1007/s13143-014-0024-7.
  103. Lenton T.M., Held H., Kriegler E., Hall J.W., Lucht W., Rahmstorf S., Schellnhuber H.J., 2008. Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences 105(6): 1786–1793. Online: www.pnas.org/cgi/content/full/ (accessed 4 January 2024).
  104. Lenton T.M., Rockström J., Gaffney O., Rahmstrof S., Richardson K., Steffen W., Schellnhuber H.J., 2019. Climate tipping points — too risky to bet against. Nature 575: 592–596.
  105. Letham B., Martindale A., Waber N., Ames K.M., 2018. Archaeological Survey of Dynamic Coastal Landscapes and Paleoshorelines: Locating Early Holocene Sites in the Prince Rupert Harbour Area, British Columbia, Canada. Journal of Field Archaeology 43(3): 181–199. DOI 10.1080/00934690.2018.1441575.
  106. Levermann A., 2011. When glacial giants roll over. Nature 472: 43–44.
  107. Lim M., Strzelecki M.C., Kasprzak M., Swirad Z.M., Webster C., Woodward J., Gjelten H., 2020. Arctic rock coast responses under a changing climate. Remote Sensing of Environment 236. DOI 10.1016/j.rse.2019.111500.
  108. Long A.J., Roberts D.H., Dawson S., 2006. Early Holocene history of the west Greenland Ice Sheet and the GH-8.2 event. Quaternary Science Reviews 25(9–10): 904–922. DOI 10.1016/j.quascirev.2005.07.002.
  109. Long A.J., Roberts D.H., Simpson M.J.R., Dawson S., Milne G.A., Huybrechts P., 2008. Late Weichselian relative sea-level changes and ice sheet history in southeast Greenland. Earth and Planetary Science Letters 272(1–2): 8–18. DOI 10.1016/j.epsl.2008.03.042.
  110. Long A.J., Roberts D.H., Wright M.R., 1999. Isolation basin stratigraphy and Holocene relative sea-level change on Arveprinsen Ejland, Disko Bugt, West Greenland. Journal of Quaternary Science 14(4): 323–345.
  111. Long A.J., Strzelecki M.C., Lloyd J.M., Bryant C.L., 2012. Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews 48: 61–66. DOI 10.1016/j. quascirev.2012.06.009.
  112. Long A.J., Szczuciński W., Lawrence T., 2015. Sedimentary evidence for a mid-Holocene iceberg-generated tsunami in a coastal lake, west Greenland. Arktos 1(1). DOI 10.1007/s41063-015-0007-7.
  113. Long A.J., Woodroffe S.A., Dawson S., Roberts D.H., Bryant C.L., 2009. Late Holocene relative sea level rise and the Neoglacial history of the Greenland Ice Sheet. Journal of Quaternary Science 24(4): 345–359. DOI 10.1002/jqs.1235.
  114. Long A.J., Woodroffe S.A., Roberts D.H., Dawson S., 2011. Isolation basins, sea-level changes and the Holocene history of the Greenland Ice Sheet. Quaternary Science Reviews 30(27–28): 3748–3768. DOI 10.1016/j.quasci-rev.2011.10.013.
  115. Luetzenburg G., Townsend D., Svennevig K., Bendixen M., Bjørk A.A., Eidam E.F., Kroon A., 2023. Sedimentary Coastal Cliff Erosion in Greenland. Journal of Geophysical Research: Earth Surface 128(4). DOI 10.1029/2022JF007026.
  116. Lüthi M.P., Vieli A., 2016. Multi-method observation and analysis of a tsunami caused by glacier calving. Cryosphere 10(3): 995–1002. DOI 10.5194/tc-10-995-2016.
  117. Macayeal D.R., Abbot D.S., Sergienko O.V., 2011. Ice-berg-capsize tsunamigenesis. Annals of Glaciology 52(58): 51–56. DOI 10.3189/172756411797252103.
  118. Macayeal D.R., Okal E.A., Aster R.C., Bassis J.N., 2009. Seismic observations of glaciogenic ocean waves (micro-tsunamis) on icebergs and ice shelves. Journal of Glaciology 55(190): 193–206. DOI 10.3189/002214309788608679.
  119. Masson-Delmotte V., Swingedouw D., Landais A., Seiden-krantz M-S., Gauthier E., Bichet V., Massa C., Perren B., Jomelli V., Adalgeirsdottir G., Hesselbjerg Christensen J., Arneborg J., Bhatt U., Walker D.A., Elberling B., Gil-let-Chaulet F., Ritz C., Gallée H., van den Broeke M., Fettweis X., de Vernal A., Vinther B., 2012. Greenland climate change: from the past to the future. Wiley Interdisciplinary Reviews: Climate Change 3(5): 427–449. DOI 10.1002/wcc.186.
  120. Mccoll S.T., Davies T.R.H., Mcsaveney M.J., 2012. The effect of glaciation on the intensity of seismic ground motion. Earth Surface Processes and Landforms 37(12): 1290–1301. DOI 10.1002/esp.3251.
  121. McCrystall M.R., Stroeve J., Serreze M., Forbes B.C., Screen J.A., 2021. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nature Communications 12(1). DOI 10.1038/s41467-021-27031-y.
  122. McFarlin J.M., Axford Y., Osburn M.R., Kelly M.A., Osterberg E.C., Farnsworth L.B., 2018. Pronounced summer warming in northwest Greenland during the Holocene and Last Interglacial. Proceedings of the National Academy of Sciences of the United States of America 115(25): 6357– 6362. DOI 10.1073/pnas.1720420115.
  123. Mercier D., Laffly D., 2005. Actual paraglacial progradation of the coastal zone in the Kongsfjorden area, western Spitsbergen (Svalbard). Geological Society Special Publication 242: 111–117. DOI 10.1144/GSL.SP.2005.242.01.10.
  124. Moore J.C., Grinsted A., Zwinger T., Jevrejeva S., 2013. Semiempirical and process-based global sea level projections. Reviews of Geophysics 51(3): 484–522. DOI 10.1002/rog.20015.
  125. Müller J., Werner K., Stein R., Fahl K., Moros M., Jansen E., 2012. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quaternary Science Reviews 47: 1–14. DOI 10.1016/J.QUASCIREV.2012.04.024.
  126. Nettles M., Larsen T.B., Elósegui P., Hamilton G.S., Stearns L.A., Ahlstrøm A.P., Davis J.L., Andersen M.L., De Juan J., Khan S.A., Stenseng L., Ekström G., Forsberg R., 2008. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophysical Research Letters 35(24). DOI 10.1029/2008GL036127.
  127. Nielsen D.M., Pieper P., Barkhordarian A., Overduin P., Ilyina T., Brovkin V., Baehr J., Dobrynin M., 2022. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nature Climate Change 12(3): 263–270. DOI 10.1038/s41558-022-01281-0.
  128. Nielsen N., 1992. A boulder beach formed by waves from a calving glacier; Eqip Sermia, West Greenland. Boreas 21(2): 159–168. DOI 10.1111/j.1502-3885.1992.tb00023.x.
  129. Nixon F.C., England J.H., Lajeunesse P., Hanson M.A., 2014. Deciphering patterns of postglacial sea level at the junction of the Laurentide and Innuitian Ice Sheets, western Canadian High Arctic. Quaternary Science Reviews 91: 165–183. DOI 10.1016/j.quascirev.2013.07.005.
  130. Obu J., 2021. How Much of the Earth’s Surface is Underlain by Permafrost? Journal of Geophysical Research: Earth Surface 126(5). DOI 10.1029/2021JF006123.
  131. Obu J., Lantuit H., Fritz M., Pollard W.H., Sachs T., Günther F., 2016. Relation between planimetric and volumetric measurements of permafrost coast erosion: A case study from Herschel Island, western Canadian Arctic. Polar Research 35(2016). DOI 10.3402/polar.v35.30313.
  132. Obu J., Westermann S., Bartsch A., Berdnikov N., Christiansen H.H., Dashtseren A., Delaloye R., Elberling B., Etzelmüller B., Kholodov A., Khomutov A., Kääb A., Leibman M.O., Lewkowicz A.G., Panda S.K., Romanovsky V., Way R.G., Westergaard-Nielsen A., Wu T., Yamkhin J., Zou D., 2019. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Science Reviews 193: 299–316. DOI 10.1016/j.earscirev.2019.04.023.
  133. Ogorodov S., Aleksyutina D., Baranskaya A., Shabanova N., Shilova O., 2020. Coastal Erosion of the Russian Arctic: An Overview. Journal of Coastal Research (95): 599–604. DOI 10.2112/SI95-117.1.
  134. Ogorodov S., Baranskaya A., Belova N.G., Kamalov A.M., Kuznetsov D.E., Overduin P.P., Shabanova N.N., Vergun A.P., 2016. Coastal dynamics of the Pechora and Kara Seas under changing climatic conditions and human disturbances. Geography, Environment, Sustainability 9(3): 53–73. DOI 10.15356/2071-9388_03v09_2016_04.
  135. Ogorodov S., Baranskaya A., Shabanova N., Belova N., Bogatova D., Novikova A., Selyuzhenok V., 2022. Erosion of the Russian Arctic Coasts in Changing Environment. Proceedings of the 39th IAHR World Congress. DOI 10.3850/iahr-39wc2521711920221175.
  136. Osborne E., Richter-Menge J., Jeffries M., 2018. Arctic Report Card 2018: Effects of persistent Arctic warming continue to mount. Online: www.arctic.noaa.gov/Report-Card (accessed 3 January 2024).
  137. Overduin P.P., Solomon S.M., James S., Manson G.K., Mcclelland J.W., Mueller D., Ødegård R., Ogorodov S., Proshutinsky A., Wetterich S., 2011. State of the Arctic Coast 2010 – A Thematic Assessment. International Arctic Science Committee, Land-Ocean Interactions in the Coastal Zone, Arctic Monitoring and Assessment Programme, International Permafrost Association. Helmholtz-Zen-trum, Geesthacht, Germany. Online: arcticcoasts.org (accessed 4 January 2024).
  138. Overduin P.P., Strzelecki M.C., Grigoriev M.N., Couture N., Lantuit H., St-Hilaire-Gravel D., Günther F., Wetterich S., 2014. Coastal changes in the Arctic. Geological Society Special Publication 388(1): 103–129. DOI 10.1144/SP388.13.
  139. Overland J.E., Wang M., Walsh J.E., Stroeve J.C., 2014. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future 2(2): 68–74. DOI 10.1002/2013ef000162.
  140. Park H-S., Kim S-J., Stewart A.L., Son S-W., Seo K-H., 2019. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Advancement of Science 5: 1–10.
  141. Patton H., Hubbard A., Andreassen K., Auriac A., Whitehouse P.L., Stroeven A.P., Shackleton C., Winsborrow M., Heyman J., Hall A.M., 2017. Deglaciation of the Eurasian ice sheet complex. Quaternary Science Reviews 169: 148–172. DOI 10.1016/j.quascirev.2017.05.019.
  142. Pattyn F., Morlighem M., 2020. The uncertain future of the Antarctic Ice Sheet. Science 367: 1331–1335.
  143. Paxman G.J.G., Austermann J., Hollyday A., 2022. Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets. Scientific Reports 12(1). DOI 10.1038/s41598-022-15440-y.
  144. Pedersen G.K., Larsen L.M., Pedersen K., Hjortkjaer F., 1998. The syn-volcanic Naajaat lake, Paleocene of West Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 140: 271–287.
  145. Pedersen J.B.T., Kroon A., Jakobsen B.H., 2011. Holocene sea-level reconstruction in the Young Sound region, Northeast Greenland. Journal of Quaternary Science 26(2): 219–226. DOI 10.1002/jqs.1449.
  146. Pedersen S.A.S., Larsen L.M., Dahl-Jensen T., Jepsen H.F., Pedersen G.K., Nielsen T., Pedersen A.K., von Platen-Hallermund F., Weng W., 2002. Tsunami-generating rock fall and landslide on the south coast of Nuussuaq, central West Greenland. Geology of Greenland Survey Bulletin 191: 73–93. DOI 10.34194/ggub.v191.5131.
  147. Peltier W.R., 1974. The Impulse Response of a Maxwell Earth. Reviews of Geophysics and Space Physics 12(4): 641–669.
  148. Prno J., Bradshaw B., Wandel J., Pearce T., Smit B., and Tozer L., 2011. Community vulnerability to climate change in the context of other exposure-sensitivities in Kugluktuk, Nunavut. Polar Research 30. DOI 10.3402/polar. v30i0.7363.
  149. Rachlewicz G., 2009. River floods in glacier-covered catchments of the High Arctic: Billefjorden Wijdefjorden, Svalbard. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography 63: 115–122. DOI 10.1080/00291950902907835.
  150. Rantanen M., Karpechko A.Y., Lipponen A., Nordling K., Hyvärinen O., Ruosteenoja K., Vihma T., Laaksonen A., 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth and Environment 3(1). DOI 10.1038/s43247-022-00498-3.
  151. Rasch M., Jensen J.F., 1997. Ancient Eskimo dwelling sites and Holocene relative sea-level changes in southern Disko Bugt, central West Greenland. Polar Research 16(2): 101–115.
  152. Reeh N., 1985. Long calving waves. Proceedings, 8th International Conference on Port and Ocean Engineering under Arctic Conditions: 1310–1327.
  153. Rignot E., Velicogna I., Van Den Broeke M.R., Monaghan A., Lenaerts J., 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38(5). DOI 10.1029/2011GL046583.
  154. Rolph R., Overduin P.P., Ravens T., Lantuit H., Langer M., 2022. ArcticBeach v1.0: A physics-based parameterization of pan-Arctic coastline erosion. Frontiers in Earth Science 10. DOI 10.3389/feart.2022.962208.
  155. Rosser N., Jones E.V., Long A., Waugh S., Szczuciński W., Strzelecki M., 2015. Listening to the Arctic: A proof-of-concept study into short-term iceberg dynamics. Online: gef. nerc.ac.uk/reports.php (accessed 4 January 2024).
  156. Sander L., Michaelis R., Papenmeier S., Pravkin S., Mollen-hauer G., Grotheer H., Gentz T., Wiltshire K.H., 2019. Indication of Holocene sea-level stability in the southern Laptev Sea recorded by beach ridges in north-east Siberia, Russia. Polar Research 38. DOI 10.33265/polar. v38.3379.
  157. Sander L., Michaelis R., Papenmeier S., Pravkin S., Wiltshire K.H., 2017. Characteristics of wave-built sedimentary archives in Buor Khaya Bay. Expeditions to Siberia 2017: 108–110.
  158. Schiermeier Q., 2017. Huge landslide triggered rare Greenland mega-tsunami. Nature DOI 10.1038/nature.2017.22374.
  159. Screen J.A., Deser C., Simmonds I., Tomas R., 2014. Atmospheric impacts of Arctic sea-ice loss, 1979-2009: Separating forced change from atmospheric internal variability. Climate Dynamics 43(1): 333–344. DOI 10.1007/s00382-013-1830-9.
  160. Serreze M.C., Barry R.G., 2011. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change 77(1–2): 85–96. DOI 10.1016/j.gloplacha.2011.03.004.
  161. Sessford E.G., Strzelecki M.C., Hormes A., 2015. Reconstruction of Holocene patterns of change in a High Arctic coastal landscape, Southern Sassenfjorden, Svalbard. Geomorphology 234: 98–107. DOI 10.1016/j.geomorph.2014.12.046.
  162. Smith L.C., Stephenson S.R., 2013. New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences of the United States of America 110(13): 6–10. DOI 10.1073/pnas.1214212110.
  163. Smith N., Sattineni A., 2016. Effect of Erosion in Alaskan Coastal Villages. 52nd ASC Annual International Conference Proceedings.
  164. Sorrel P., Debret M., Billeaud I., Jaccard S.L., McManus J.F., Tessier B., 2012. Persistent non-solar forcing of Holocene storm dynamics in coastal sedimentary archives. Nature Geoscience 5(12): 892–896. DOI 10.1038/ngeo1619.
  165. Sparrenbom C.J., Bennike O., Björck S., Lambeck K., 2006. Relative sea-level changes since 15 000 cal. yr BP in the Nanortalik area, southern Greenland. Journal of Quaternary Science 21(1): 29–48. DOI 10.1002/jqs.940.
  166. Stankowski W., Grześ M., Karczewski A., Lankauf K., Rachlewicz G., Szczęsny R., Szczuciński W., Zagórski P., Ziaja W., 2013. Raised marine terraces on Spitsbergen. In: Zwoliński Zb., Kostrzewski A., Pulina M. (eds), Ancient and modern geoecosystems of Spitsbergen. Bogucki Wy-dawnictwo Naukowe, Poznań.
  167. Stearns S.R., 1966. Permafrost (perennially frozen ground): U.S. Army Cold Regions Research and Engineering Laboratory. Cold Regions Science and Engineering 1.
  168. Steffen R., Steffen H., Weiss R., Lecavalier B.S., Milne G.A., Woodroffe S.A., Bennike O., 2020. Early Holocene Greenland-ice mass loss likely triggered earthquakes and tsunami. Earth and Planetary Science Letters 546. DOI 10.1016/j.epsl.2020.116443.
  169. St-Hilaire-Gravel D., Bell T.J., Forbes D.L., 2010. Raised Gravel Beaches as Proxy Indicators of Past Sea-Ice and Wave Conditions, Lowther Island, Canadian Arctic Archipelago. Arctic 63(2): 213–226.
  170. Strzelecki M.C., 2011a. Cold shores in warming times – Current state and future challenges in high arctic coastal geomorphological studies. Quaestiones Geographicae 30(3): 101–113. DOI 10.2478/v10117-011-0030-0.
  171. Strzelecki M.C., 2011b. Schmidt hammer tests across a recently deglacierized rocky coastal zone in Spitsbergen – is there a “coastal amplification” of rock weathering in polar climates? Polish Polar Research 32(3): 239–252. DOI 10.2478/v10183-011-0017-5.
  172. Strzelecki M.C., Jaskólski M.W., 2020. Arctic tsunamis threaten coastal landscapes and communities-Survey of Kar-rat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland. Natural Hazards and Earth System Sciences 20(9): 2521–2534. DOI 10.5194/nhess-20-2521-2020.
  173. Strzelecki M.C., Kasprzak M., Lim M., Swirad Z.M., Jaskólski M., Pawłowski Ł.. Modzel P., 2017b. Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard. Science of the Total Environment 607–608: 443– 453. DOI 10.1016/j.scitotenv.2017.07.009.
  174. Strzelecki M.C., Long A.J., Lloyd J.M., 2017a. Post-Little Ice Age Development of a High Arctic Paraglacial Beach Complex. Permafrost and Periglacial Processes. DOI 10.1002/ppp.1879.
  175. Strzelecki M.C., Long A.J., Lloyd J.M., Małecki J., Zagórski P., Pawłowski Ł., Jaskólski M.W., 2018. The role of rapid glacier retreat and landscape transformation in controlling the post-Little Ice Age evolution of paraglacial coasts in central Spitsbergen (Billefjorden, Svalbard). Land Degradation and Development 29(6): 1962–1978. DOI 10.1002/LDR.2923.
  176. Strzelecki M.C., Małecki J., Zagórski P., 2015. The Influence of Recent Deglaciation and Associated Sediment Flux on the Functioning of Polar Coastal Zone – Northern Petuniabukta, Svalbard. In: Maanan M., Robin M. (eds), Sediment fluxes on coastal areas. Coastal Research Library. DOI 10.1007/978-94-017-9260-8_2.
  177. Strzelecki M.C., Szczuciński W., Dominiczak A., Zagórski P., Dudek J., Knight J., 2020. New fjords, new coasts, new landscapes: The geomorphology of paraglacial coasts formed after recent glacier retreat in Brepollen (Hornsund, southern Svalbard). Earth Surface Processes and Landforms 45(5): 1325–1334. DOI 10.1002/esp.4819.
  178. Sumata H., de Steur L., Divine D.V., Granskog M.A., Gerland S., 2023. Regime shift in Arctic Ocean sea ice thickness. Nature 615(7952): 443–449. DOI 10.1038/s41586-022-05686-x.
  179. Svendsen J.I., Alexanderson H., Astakhov V.I., Demidov I., Dowdeswell J.A., Funder S., Gataullin V., Henriksen M., Hjort C., Houmark-Nielsen M., Hubberten H.W., Ingólfsson Ó., Jakobsson M., Kjær K.H., Larsen E., Lokrantz H., Lunkka J.P., Lyså A., Mangerud J., Matiouchkov A., Murray A., Möller P., Niessen F., Nikolskaya O., Polyak L., Saarnisto M., Siegert C., Siegert M.J., Spielhagen R.F., Stein R., 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23(11–13): 1229– 1271. DOI 10.1016/j.quascirev.2003.12.008.
  180. Svennevig K., Keiding M., Korsgaard N.J., Lucas A., Owen M., Poulsen M.D., Priebe J., Sørensen E.V., Morino C., 2023. Uncovering a 70-year-old permafrost degradation induced disaster in the Arctic, the 1952 Niiortuut landslide-tsunami in central West Greenland. Science of the Total Environment 859. DOI 10.1016/j.scitotenv.2022.160110.
  181. Svennevig K., Solgaard A.M., Salehi S., Dahl-Jensen T., Merryman Boncori J.P., Larsen T.B., Voss P.H., 2019. A multidisciplinary approach to landslide monitoring in the Arctic: Case study of the March 2018 ML 1.9 seismic event near the Karrat 2017 landslide. Geological Survey of Denmark and Greenland Bulletin 43. DOI 10.34194/GEUSB-201943-02-08.
  182. Tanguy R., Whalen D., Prates G., Vieira G., 2023. Shoreline change rates and land to sea sediment and soil organic carbon transfer in eastern Parry Peninsula from 1965 to 2020 (Amundsen Gulf, Canada). Arctic Science DOI 10.1139/as-2022-0028.
  183. Thoman R.L., Richter-Menge J., Druckenmiller M.L., 2020. Arctic Report Card 2020. DOI 10.25923/mn5p-t549.
  184. Urbański J.A., Litwicka D., 2022. The decline of Svalbard landfast sea ice extent as a result of climate change. Oceanologia 64(3): 535–545. DOI 10.1016/j.oceano.2022.03.008.
  185. Vonk J.E., Sanchez-Garca L., Van Dongen B.E., Alling V., Kosmach D., Charkin A., Semiletov I.P., Dudarev O.V., Shakhova N., Roos P., Eglinton T.I., Andersson A., Gustafsson A., 2012. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489(7414): 137–140. DOI 10.1038/nature11392.
  186. Wake L.M., Lecavalier B.S., Bevis M., 2016. Glacial Isostatic Adjustment (GIA) in Greenland: a Review. Current Climate Change Reports 2: 101–111. DOI 10.1007/s40641-016-0040-z.
  187. Walter F., Olivieri M., Clinton J.F., 2013. Calving event detection by observation of seiche effects on the Greenland fjords. Journal of Glaciology 59(213): 162–178. DOI 10.3189/2013JoG12J118.
  188. Wang J., Li D., Cao W., Lou X., Shi A., Zhang H., 2022. Remote Sensing Analysis of Erosion in Arctic Coastal Areas of Alaska and Eastern Siberia. Remote Sensing 14(3). DOI 10.3390/rs14030589.
  189. Weidick A., Bennike O., 2007. Quaternary Glaciation History and Glaciology of Jakobshavn Isbrae and the Disko Bugt Region, West Greenland: A Review, Geological Survey of Denmark and Greenland 14: 1–78.
  190. Welch C., 2019. Climate change has finally caught up to this Alaska village. National Geographic. Online: www.nationalgeographic.com/science/article/climate-change-finally-caught-up-to-this-alaska-village?f-bclid=IwAR3QrguHKctdqV1yeiPLXi5AOKPUk2veFI-jwxqlBH_TKdCvR78quhytt6GQ (accessed 14 December 2023).
  191. Whitehouse P.L., Allen M.B., Milne G.A., 2007. Glacial isostatic adjustment as a control on coastal processes: An example from the Siberian Arctic. Geology 35(8): 747–750. DOI 10.1130/G23437A.1.
  192. Wieczorek I., Strzelecki M.C., Stachnik Ł., Yde J.C., Małecki J., 2023. Post-Little Ice Age glacial lake evolution in Svalbard: inventory of lake changes and lake types. Journal of Glaciology 69(277): 1449–1465. DOI 10.1017/jog.2023.34.
  193. Wojtysiak K., Herman A., Moskalik M., 2018. Wind wave climate of west Spitsbergen: seasonal variability and extreme events. Oceanologia 60(3): 331–343. DOI 10.1016/j.oceano.2018.01.002.
  194. Wołoszyn A., Owczarek Z., Wieczorek I., Kasprzak M., Strzelecki M.C., 2022. Glacial Outburst Floods Responsible for Major Environmental Shift in Arctic Coastal Catchment, Rekvedbukta, Albert I Land, Svalbard. Remote Sensing 14(24). DOI 10.3390/rs14246325.
  195. Wolper J., Gao M., Lüthi M.P., Heller V., Vieli A., Jiang C., Gaume J., 2021. A glacier–ocean interaction model for tsunami genesis due to iceberg calving. Communications Earth and Environment 2(1). DOI 10.1038/s43247-021-00179-7.
  196. Woodroffe S.A., Long A.J., 2013. SEA-LEVELS, LATE QUATERNARY | Late Quaternary Sea-Level Changes in Greenland. In: Scott A.E., Cary J.M. (eds), Encyclopedia of Quaternary Science. DOI 10.1016/B978-0-444-53643-3.00144-8.
  197. Wu P., 2001. Postglacial induced surface motion and gravity in Laurentia for uniform mantle with power-law rheology and ambient tectonic stress. Earth and Planetary Science Letters 186: 427–435.
  198. Zagórski P., 2011. Shoreline dynamics of Calypsostranda (NW Wedel Jarlsberg Land, Svalbard) during the last century. Polish Polar Research 32(1): 67–99. DOI 10.2478/v10183-011-0004-x.
  199. Zagórski P., Gajek G., Demczuk P., 2012. The influence of glacier systems of polar catchments on the functioning of the coastal zone (Recherchefjorden, Svalbard). Zeitschrift fur Geomorphologie 56: 101–121. DOI 10.1127/0372-8854/2012/S-00075.
  200. Zagórski P., Jarosz K., Superson J., 2020. Integrated Assessment of Shoreline Change along the Calypsostranda (Svalbard) from Remote Sensing, Field Survey and GIS. Marine Geodesy, 43(5): 433–471. DOI 10.1080/01490419.2020.1715516.
  201. Zagórski P., Rodzik J., Moskalik M., Strzelecki M.C., Lim M., Błaszczyk M., Promińska A., Kruszewski G., Styszyńska A., Malczewski A., 2015. Multidecadal (1960-2011) shoreline changes in Isbjørnhamna (Hornsund, Svalbard). Polish Polar Research 36(4): 369–390. DOI 10.1515/popore-2015-0019.
  202. Zhang T., Li D., East A.E., Walling D.E., Lane S., Overeem I., Beylich A.A., Koppes M., Lu X., 2022. Warming-driven erosion and sediment transport in cold regions. Nature Reviews Earth & Environment. DOI 10.1038/s43017-022-00362-0.
  203. Ziaja W., Haska W., 2023. The newest Arctic islands and straits: Origin and distribution, 1997–2021. Land Degradation and Development. DOI 10.1002/ldr.4583.
  204. Ziaja W., Maciejowski W., Ostafin K., 2009. Coastal landscape dynamics in ne Sørkapp land (SE Spitsbergen), 1900-2005. Ambio 38(4): 201–208. DOI 10.1579/0044-744738.4.201.
  205. Ziaja W., Ostafin K., 2015. Landscape–seascape dynamics in the isthmus between Sørkapp Land and the rest of Spitsbergen: Will a new big Arctic island form? Ambio 44(4): 332–342. DOI 10.1007/s13280-014-0572-1.
  206. Ziaja W., Ostafin K., 2019. Origin and location of new Arctic islands and straits due to glacial recession. Ambio 48(1): 25–34. DOI 10.1007/s13280-018-1041-z.
  207. Ziaja W., Ostafin K., Maciejowski W., Kruse F., 2023. Coastal landscape degradation and disappearance of Davislaguna Lake, Sørkappland, Svalbard, 1900–2021. Land Degradation and Development. DOI 10.1002/ldr.4765.
DOI: https://doi.org/10.14746/quageo-2024-0008 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 127 - 156
Submitted on: Sep 21, 2023
Published on: Mar 7, 2024
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2024 Zofia Owczarek, Zofia Stachowska-Kamińska, Oskar Kostrzewa, Małgorzata Szczypińska, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.