Have a personal or library account? Click to login

Cartography and Analysis of the Urban Growth, Case Study: Inter-Communal Grouping of Batna, Algeria

Open Access
|Feb 2023

References

  1. Alharthi B., El-Damaty T.A., 2022. Study the Urban Expansion of Taif City Using Remote Sensing and GIS Techniques for Decision Support System. Advances in Remote Sensing 11(1): 1–15. DOI 10.4236/ars.2022.111001.
  2. Amici V., Rocchini D., Filibeck G., Bacaro G., Santi E., Geri F., Landi S., Scopola A., Chiarucci A., 2015. Landscape structure effects on forest plant diversity at local scale: exploring the role of spatial extent. Ecological Complexity 21: 44–52. DOI 10.1016/j.ecocom.2014.12.004.
  3. Anas A., Arnott R., Small K.A., 1998. Urban Spatial Structure. Journal of Economic Literature 36(3): 1426–1464.
  4. Angel S., Sheppard S.C., Civco D.L., 2005. The dynamics of global urban expansion. The World Bank, Washington, DC.
  5. Aprillia Y., Pigawati B., 2018. Urban Sprawl Typology in Semarang City. Forum Geografi 32(2): 131–145. DOI 10.23917/forgeo.v31i2.6369.
  6. Bhatta B., Saraswati S., Bandyopadhyay D., 2010. Quantifying the degree-of-freedom, degree-of-sprawl, and degree-of-goodness of urban growth from remote sensing data. Applied Geography 30(1): 96–111. DOI 10.1016/j.apgeog.2009.08.001.
  7. Bhattacharjee S., 2019. Measuring Urban Growth of Silchar Town Using Shannon Entropy Estimation. International Journal of Scientific Research and Reviews 8(1): 2016–2022.
  8. Brown S.R., 1995. Measuring the dimension of self-affine fractals: example of rough surfaces, In: Barton C.C., La Pointe P.R. (eds), Fractals in the Earth Sciences. Springer, Boston: 77–78. DOI 10.1007/978-1-4899-1397-5_4.
  9. Chen Y., 2013. Fractal analytical approach of urban form based on spatial correlation function. Chaos, Solitions & Fractals 49: 47–60. DOI 10.1016/j.chaos.2013.02.006.
  10. Chen Y., Wang J., Feng J., 2017. Understanding Fractal Dimension of Urban Form through Spatial Entropy. Entropy 19(11): 1–18. DOI 10.3390/e19110600.
  11. Congalton R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37(1): 35–46.
  12. De Oliveira M.A.B., Brandi A.C., dos Santos C.A., Botelho P.H.H., Cortez J.L.L. de Godoy M.F., Braile D.M., 2014. Comparison of fractal dimension and Shannon entropy in myocytes from rats treated with histidine-tryptophanglutamate and histidine-tryptophan cetoglutarate. Revista Brasileira de Cirurgia Cardiovascular 29(2): 156–62. DOI 10.5935/1678-9741.20140052.
  13. Deka J., Tripathi O.P., Khan M.L., 2010. Urban growth trend analysis using Shannon Entropy approach – A case study in North-East India. International Journal of Geomatics and Geosciences 2(4): 1072–1078.
  14. DRC, 2017. Monograph of the Batna Region. Direction régionale du commerce, N02: 1–35.
  15. El-Raey M., Nasr S., El-Hattab M., Frihy, O., 1995. Change detection of Rosetta promontory over the last forty years. International Journal of Remote Sensing 16: 825–834.
  16. Fan Y., Zhu X., He Z., Zhang S., Geo J., Chen F., Peng X., Li J., 2017. Urban expansion assessment in Huaihe river basin, China from 1998 to 2013 using remote sensing data. Journal of Sensors ID 9281201: 1–10. DOI 10.1155/2017/9281201.
  17. Ge S., Nan J., Yang L., Bin H., 2018. Analysis of the dynamic urban expansion based on multi-sourced data from 1998 to 2013: a case study of Jiangsu province. Sustainability 10(10) 3467: 1–18. DOI 10.3390/su10103467.
  18. Geri F., Amici V., Rocchini D., 2011. Spatially-based accuracy assessment of forestation prediction in a complex Mediterranean landscape. Applied Geography, 31(3): 881–890. DOI 10.1016/j.apgeog.2011.01.019.
  19. Ghosh P., Mukhopadhyay A., Chanda A., Mondal P., Akhand A., Mukherjee S., Nayak S.K., Ghosh S., Mitra D., Ghosh T., Hazra S., 2017. Application of cellular automata and Markov-chain model in geospatial environmental modelling – A review. Remote Sensing Applications: Society and Environment 5: 64–77. DOI 10.1016/j.rsase.2017.01.005.
  20. Gyeltshen S., Tran T.V., Khunta W., Kannaujiya S., 2022. Assessing Spatiotemporal Built-up Dynamics in Chiang Mai City, Thailand using Entropy approach. Research Square: 1–22. DOI 10.21203/rs.3.rs-1179652/v1.
  21. Halimi M., Sedighifar Z., Mohammadi C., 2017. Analyzing spatiotemporal land use/cover dynamic using remote sensing imagery and GIS techniques case: Kan basin of Iran. GeoJournal 83: 1067–1077. DOI 10.1007/s10708-017-9819-2.
  22. Hamad R., 2019. A remote sensing and GISbased analysis of urban sprawl in Soran District, Iraqi Kurdistan. SN Applied Sciences 2, 24. DOI 10.1007/s42452-019-1806-4.
  23. Hotar V., Salac P., 2014. Surface evaluation by estimation of fractal dimension and statistical tools. Scientific World Journal 2014, ID 435935: 1–10. DOI 10.1155/2014/435935.
  24. Hu S., Tong L., Frazier A.E., Liu Y., 2015. Urban boundary extraction and sprawl analysis using Landsat images: a case study in Wuhan, China. Habitat International 47: 183–195. DOI 10.1016/j.habitatint.2015.01.017.
  25. Jain S., Siddiqui A., Tiwari P.S., Shashi M., 2016. Urban growth assessment using CA Markov model: a case study of Dehradun city. 9th International Geographic Union, Delhi: 1–9.
  26. Jat M.K., Garg P.K., Khare D., 2008. Modelling of urban growth using spatial analysis techniques: a case study of Ajmer city (India). International Journal of Remote Sensing 29(2): 543–567. DOI 10.1080/01431160701280983.
  27. Jensen J.R.E., 1983. Urban/suburban land-use analysis. American Society of Photogrammetry 2: 1571–1666.
  28. Jimoh R., Afonja Y., Albert Ch., Amoo N., 2018. Spatio-temporal urban expansion analysis in a growing city of Oyo Town, Oyo state, Nigeria using remote sensing and geographic information system (GIS) tools. International Journal of Environment and Geoinformatics 5(2): 104–113. DOI 10.30897/ijegeo.354627.
  29. Joshi P.K., Lele N., Agarwal S.P., 2006. Entropy as an indicator of fragmented landscape. Current Science 91(3): 276–278.
  30. Kaya H.S., Bölen F., 2011. Kentsel dokudaki değişimin fraktal geometri yöntemiyle incelenmesi. İTÜ Dergisi/A Mimarlık 10(1): 39–50.
  31. Landis J.R., Koch G.G., 1977. The measurement of observer agreement for categorical data. Biometrics 33(1): 159–174.
  32. Liu H., Lin X., Xie T., 2014. Urban sprawl and its evolution trend of fuzhou city, China. BioTechnology An Indian Journal 10(22): 13923–13934.
  33. Liu X., Li X., Shi X., Wu S., Liu T., 2008. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling 211(1–2): 169–181. DOI 10.1016/j.ecolmodel.2007.08.024.
  34. Ma Y., Xu R., 2010. Remote sensing monitoring and driving force analysis of urban expansion in Guangzhou city, China. Habitat International 34(2): 228–235. DOI 10.1016/j.habitatint.2009.09.007.
  35. Makhamreha Z., Almanasyeha N., 2011. Analyzing the state and pattern of urban growth and city planning in Amman using satellite images and GIS. European Journal of Social Sciences 24(2): 225–264.
  36. Martin L.R.G., 1986. Change Detection in the Urban Fringe Employing Landsat Satellite Imagery. Plan Canada 26(7): 182–190.
  37. Morency C., Chapleau R., 2003. Fractal geometry for the characterisation of urban-related states: Greater Montreal Case. Harmonic and Fractal Image Analysis – HarFA e-Journal: 30–34. Online: www.fch.vut.cz/lectures/imagesci/download_ejournal/09_C.Morency.pdf (accessed on 17 April 2018).
  38. Mundhe N.N., Jaybhaye R.G., 2015. Measuring urban growth of Pune city using Shannon Entropy approach. The Journal of Geography and Geology. Photon 119: 290–302.
  39. Nasehi S., Namin A.I., Salehi E., 2018. Simulation of land cover changes in urban area using CA-MARKOV model (case study: zone 2 in Tehran, Iran). Modeling Earth Systems and Environment 5(1): 193–202. DOI 10.1007/s40808-018-0527-9.
  40. Nazarnia N., Hardinga C., Jaegera J.A.G., 2019. How suitable is Entropy as a measure of urban sprawl? Landscape and Urban Planning 184: 32–43. DOI 10.1016/j.landurbplan.2018.09.025.
  41. Nelson A.C., 1999. Comparing states with and without growth management analysis based on indicators with policy implications. Land Use Policy 16(2): 121–127. DOI 10.1016/S0264-8377(99)00009-5.
  42. Nouri J., Gharagozlou A., Arjmandi R., Faryadi S., Adl M., 2014. Predicting urban land use changes using a CA-Markov model. Arabian Journal for Science and Engineering 39: 5565–5573. DOI 10.1007/s13369-014-1119-2.
  43. Ozturk D., 2017. Assessment of urban sprawl using Shannon's Entropy and fractal analysis: a case study of Atakum, Ilkadim and Canik (Samsun, Turkey). Journal of Environmental Engineering and Landscape Management 25(3): 264–276. DOI 10.3846/16486897.2016.1233881.
  44. Parker D.C., Manson S.M., Janssen M.A., Hoffman M.J., Deadman P., 2003. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Annals of the Association of American Geographers, 93(2): 314–337. DOI 10.1111/1467-8306.9302004.
  45. PDAU [Plan directeur d’aménagement et d’urbanisme], 2012. Plan directeur d’aménagement et d’urbanisme. Online: https://www.mhuv.gov.dz/fr/pdau/ (accessed October 23, 2022).
  46. Rastogi K., Jain G.V., 2018. Urban sprawl analysis using Shannon's entropy and fractal analysis: A case study on Tiruchirappalli city, India. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-5, 2018 ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India. DOI 10.5194/isprs-archives-XLII-5-761-2018.
  47. Robbany I.F., Gharghi A., Traub K.P., 2019. Land Use Change Detection and Urban Sprawl Monitoring in Metropolitan Area of Jakarta (Jabodetabek) from 2001 to 2015. KnE Engineering 4(3): 257–268. DOI 10.18502/keg.v4i3.5862.
  48. Ruwashdi M.F., Khakani E.T., 2022. Simulating and predicting of urban expansion in Al Najaf city utilizing a Ca-Markov model. AIP Conference Proceedings 2398, 020058. DOI 10.1063/5.0094462.
  49. Serdaroğlu Sağ N., 2021. Assessment of urban development pattern and urban sprawl using Shannon's entropy: A case study of Konya (Turkey). Journal of Human Sciences 18(2): 252–265. DOI 10.14687/jhs.v18i2.6158.
  50. Shen G., 2002. Fractal dimension and fractal growth of urbanized areas. International Journal of Geographical Information Science 16(5): 419–437. DOI 10.1080/13658810210137013.
  51. Sridhar M.B., Sathyanathan R., Subramani R., Sudalaimathu K., 2020. Urban sprawl analysis using remote sensing data and its impact on surface water bodies: case study of Surat, India. IOP Conference Series: Materials Science and Engineering 912 062070. DOI 10.1088/1757-899X/912/6/062070.
  52. Sudhira H.S., Ramachandra T.V., Jagadish K.S., 2004. Urban sprawl: metrics, dynamics and modeling using GIS. International Journal of Applied Earth Observation 5(1): 29–39. DOI 10.1016/j.jag.2003.08.002.
  53. Sun H., Forsythe W., Waters N., 2007. Modeling urban land use change and urban sprawl: Calgary, Alberta, Canada. Networks and Spatial Economics 7(4): 353–376. DOI 10.1007/s11067-007-9030-y.
  54. Tannier C., Pumain D., 2005. Fractals in urban geography: a theoretical outline and an empirical example. Cybergeo 307: 1–22. DOI 10.4000/cybergeo.3275.
  55. Terzi F., Kaya H.S., 2008. Analyzing Urban Sprawl Patterns through Fractal Geometry: The Case of Istanbul Metropolitan Area. Centre for Advanced Spatial Analysis Working Papers 144: 1–23. DOI 10.1080/13658810210137013.
  56. Tewolde M.G., Cabral P., 2011. Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sensing 3(10): 2148–2165. DOI 10.3390/rs3102148.
  57. Theiler J., 1990. Estimating fractal dimension. Journal of the Optical Society of America A 7(6): 1055–1073. DOI 10.1364/JOSAA.7.001055.
  58. Thomas I., Frankhauser P., 2013. Fractal dimensions of the built-up footprint: buildings versus roads. Fractal evidence from Antwerp (Belgium). Environment and Planning B: Urban Analytics and City Science 40(2): 310–329. DOI 10.1068/b38218.
  59. Torrens P.M., Alberti M., 2000. Measuring sprawl. Centre for Advanced Spatial Analysis Working Papers 27: 1–34.
  60. Vanum G., Hadgu K.M., 2012. GIS and remote sensing based urban sprawl detection and its implications on sustainable development. International Journal of Management, IT and Engineering 2(9): 452–478.
  61. Wu K., Ye X., Qi Z.F., Zhang H., 2013. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities 31: 276–284. DOI 10.1016/j.cities.2012.08.003.
  62. Xiao J., Shen Y., Ge J., Tateishi R., Tang C., Liang Y., Huang Z., 2006. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape and Urban Planning 75(1–2): 69–80. DOI 10.1016/j.landurbplan.2004.12.005.
  63. Yeh A.G.-O., Li X., 2001. Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogrammetric Engineering and Remote Sensing 67(1): 83–90.
  64. Zhao Y., Xie D., Zhang X., Ma S., 2021. Integrating Spatial Markov Chains and Geographically Weighted Regression-Based Cellular Automata to Simulate Urban Agglomeration Growth: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area. Land 10(6): 633. DOI 10.3390/land10060633pp1-19.
DOI: https://doi.org/10.14746/quageo-2023-0009 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 123 - 139
Submitted on: Jul 16, 2022
Published on: Feb 6, 2023
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2023 Nadia Fekkous, Djamel Alkama, Khaoula Fekkous, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.