References
- W. Linling, Z. Daqi, P. Wen, and Z. Youmin, “A Survey of Underwater Search for Multi-Target using Multi-AUV: Task Allocation, Path Planning, and Formation Control,” Ocean Engineering, vol. 278, 2023, 114393; doi: 10.1016/j.oceaneng.2 023.114393.
- E.S. Ali et al., “A Systematic Review on Energy Effiiciency in the Internet of Underwater Things (IoUT): Recent Approaches and Research Gaps,” Journal of Network and Computer Applications, vol. 213, 2023, pp. 1–22, 103594; doi: 10.1016/j.jnca.2023.103594.
- B. Zhang et al., “Autonomous Underwater Vehicle Navigation: A Review,” Ocean Engineering, vol. 273, 2023, 113861, pp. 1–29; doi: 10.1016/j.oc eaneng.2023.113861.
- A. Bahr, J.J. Leonard, and A. Martinoli, “Dynamic Positioning of Beacon Vehicles for Cooperative Underwater Navigation,” In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 3760–3767; doi: 10.110 9/IROS.2012.6386168.
- C. German et al., “Hydrothermal Exploration with the Autonomous Benthic Explorer,” Deep Sea Research Part I: Oceanographic Research Papers, vol. 55, 2008, pp. 203–219; doi: 10.1016/j.dsr. 2007.11.004.
- B. Allotta et al., “The ARROWS Project: Robotic Technologies for Underwater Archaeology,” IFAC-PapersOnLine; vol. 48, no. 2, 2015, pp. 194–199, ISSN 2405-8963; doi: 10.1016/j.ifacol.2015.06.032.
- F. Schill, A. Bahr, and A. Martinoli, “Vertex: A New Distributed Underwater Robotic Platform for Environmental Monitoring,” In: Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol. 6, Cham: Springer, 2018; doi: 10.1007/978-3-319-7300 8-0_47.
- R. Katzschmann et al., “Exploration of Underwater Life with an Acoustically Controlled Soft Robotic Fish,” Science Robotics, vol. 3 no. 16, 2018, eaar3449; doi: 10.1126/scirobotics.aar3 449.
- T. Wu et al., “ A Hydrothermal Investigation System for the Qianlong-II Autonomous Underwater Vehicle,” Acta Oceanologica Sinica; vol. 38, 2019, pp. 159–165; doi: 10.1007/s13131-019-1408-4.
- G. Li et al., “Self-Powered Soft Robot in the Mariana Trench,” Nature, vol. 591, 2021, pp. 66–71; doi: 10.1038/s41586-020-03153-z.
- A. Palomer, P. Ridao, and D. Ribas, “Multibeam 3D Underwater SLAM with Probabilistic Registration,” Sensors, vol. 16, no. 4, 2016:560; doi: 10.3390/s16040560.
- R. Kimura et al., “Guidance and Control of an Autonomous Underwater Robot for Tracking and Monitoring Spilled Plumes of Oil and Gas from Seabed,” In: The Twenty-Third International Offshore and Polar Engineering Conference. OnePetro, 2013, pp. 366–371.
- G. Marani, S.K. Choi, and J. Yuh, “Underwater Autonomous Manipulation for Intervention Missions AUVs,” Ocean Engineering, vol. 36, no. 1, 2009, pp. 15–23; doi: 10.1016/j.oceaneng.200 8.08.007.
- M.J. Hamilton, S. Kemna, and D. Hughes, “Antisubmarine Warfare Applications for Autonomous Underwater Vehicles: The GLINT09 Sea Trial Results,” J. Field Robotics; vol. 27, 2010, pp. 890–902; doi: 10.1002/rob.20362.
- D.P. Williams, “On Optimal AUV Track-Spacing for Underwater Mine Detection,” In: 2010 IEEE International Conference on Robotics and Automation, IEEE, 2010, pp. 4755–4762; doi: 10.1109/ROBOT.2010.5509435.
- M. Prats et al., “Reconfiigurable AUV for Intervention Missions: A Case Study on Underwater Object Recovery,” Intelligent Service Robotics, vol. 5, 2012, pp. 19–31; doi: 10.1007/s11370-011-0101-z.
- G. Casalino et al., “Underwater Intervention Robotics: An Outline of the Italian National Project MARIS,” Marine Technology Society Journal, vol. 50, 2016, pp. 98–107; doi: 10.4031/MT SJ.50.4.7.
- G. Ozer, “Development of Autonomous Underwater Vehicle,” Unpublished M.Sc. Thesis, 2023-M.Sc.-032. Aydın Adnan Menderes University, Türkiye, 2023.
