Have a personal or library account? Click to login
AI-Based Yolo V4 Intelligent Traffic Light Control System Cover

References

  1. A. A. Zaid, Y. Suhweil and M. A. Yaman, “Smart controlling for traffic light time,” 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, 2017, pp. 1–5. doi:10.1109/AEECT.2017.8257768.
  2. Adarsh P., Rathi, P., Kumar, M. (2020). “YOLO v3-Tiny: Object detection and recognition using one stage improved model.” 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). doi:10.1109/ icaccs48705.2020.9074315
  3. Chattaraj, A., Bansal, S., Chandra, A. (2009). “Implementation of image processing in real-time IEEE Potentials,” 28(3), 40–43. doi:10.1109/ mpot.2009.932094
  4. Chong HF, Ng DWK. (2016). “Development of IoT device for traffic management system.” 2016 IEEE Student Conference on Research and Development (SCOReD). doi:10.1109/scored.2016.7810059
  5. Choudhury S, Chattopadhyay SP, Hazra TK. (2017). “Vehicle detection and counting using Haar feature-based classifier.” 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON). doi:10.1109/iemecon.2017.8079571
  6. D.Y. Huang, Chao-Ho chen, Wu-chin hu “Reliable moving vehicle detection based on the filtering of swinging tree leaves and raindrops.” doi:10.1109/ student.2019.6089337
  7. Kanungo A, Sharma A, Singla C. (2014). “Smart traffic lights switching and traffic density calculation using video processing.” 2014 Recent Advances in Engineering and Computational Sciences (RAECS). doi:10.1109/raecs.2014.6799542
  8. Khushi. (2017). “Smart Control of Traffic Light System Using Image Processing.” 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC). doi:10.1109/ctceec.2017.8454966
  9. Li J, Zhang Y, Chen Y. (2016). “A Self-Adaptive Traffic Light Control System Based on Speed of Vehicles.” 2016 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). doi:10.1109/qrs-c.2016.58
  10. Muhammad Fachrie. “A Simple Vehicle Counting System Using Deep Learning with YOLOv3 Model.” (ICCSNT), 2017. doi:10.1109/ iccsnt.2017.8343709
  11. Manikonda P, Yerrapragada AK, Annasamudram SS. (2011). “Intelligent traffic management system.” 2011 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT). doi:10.1109/student. 2011.6089337
  12. K. Sangeetha, Kavibharathi,Gnanasoundari, andKishorekumar. “Implementation of image processing in real-time traffic light control.” 2019, 3rd International Conference on Electronics Computer Technology. doi:10.1109/ icectech.2019.5941662
  13. Osman T, Psyche SS, Ferdous JMS, Zaman Hu. “Intelligent traffic management system for cross-sections of roads using computer vision.” 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). 2017. doi:10.1109/ccwc.2017.7868350
  14. Pranav Shinde, Srinand Yadav, Shivani Rudrake, Pravin Kumbhar. “Smart Traffic Control System using YOLO.” 2019 IEEE 8th Data-Driven Control and Learning Systems Conference (DDCLS). doi:10.1109/ddcls.2019.8908873
  15. Rani LJ, Kumar M, Naresh KS, Vignesh, S. “Dynamic traffic management system using infrared (IR) and Internet of Things (IoT).” 2017, Third International Conference on Science Technology Engineering Management (ICON-STEM). doi:10.1109/iconstem.2017.8261308
  16. Rizwan P., Suresh K.,Babu MR. “Real-time smart traffic management system for smart cities by using the Internet of Things and big data.” 2016, International Conference on Emerging Technological Trends (ICETT). doi:10.1109/icett.2016.7873660
  17. Tao J, Wang H, Zhang X, Li, X., Yang, H. “An object detection system based on YOLO in traffic scene.” 2017, 6th International Conference on Computer Science and Network Technology (ICCSNT). doi:10.1109/iccsnt.2017.8343709
  18. Tai Huu - Phuong Tran, Jae Wook Jeon. “Accurate Real-Time Traffic Light Detection Using YOLOv4.” 2020. DOI: 10.1109/ICCE-Asia49877.2020.9277063
  19. Corovic, A., Ilic, V., Duric, S., Marijan, M., Pavkovic, B. “The Real-Time Detection of Traffic Participants Using YOLO Algorithm.” 2018, 26th Telecommunications Forum (TELFOR). doi:10.1109/telfor.2018.8611986.
  20. Wang Q, Zhang Q, Liang X, Wang Y, Zhou C, Mikulovich VI. “Traffic Lights Detection and Recognition Method Based on the Improved YOLOv4 Algorithm.” Sensors, vol. 22, no. 1, 2022, 200. https://doi.org/10.3390/s22010200.
  21. Dave, P., Chandarana, A., Goel, P., & Ganatra, A. “An amalgamation of YOLOv4 and XGBoost for nextgen smart traffic management system.” PeerJ. Computer Science, vol. 7, 2021, e586. https://doi.org/10.7717/peerj-cs.586.
  22. Ouallane, Asma Ait, et al. “Overview of Road Traffic Management Solutions based on IoT and AI.” Procedia Computer Science, vol. 198, 2022, 518-523. https://doi.org/10.1016/j.procs.2021.12.279
  23. B. Ali Almansoori, S. Saif Almansoori, H. Almansoori, R. Ahmed Almansoori, I. Ahmed and K. Shahid, “AI-Based Adaptive Signaling for Traffic Control Around Roundabouts,” Advances in Science and Engineering Technology International Conferences (ASET), 2022, pp. 1-5, doi: 10.1109/ASET53988.2022.9735009.
  24. Michael Osigbemeh, Michael Onuu, Olumuyiwa Asaolu. “Design and development of an improved traffic light control system using hybrid lighting system,” Journal of Traffic and Transportation Engineering (English Edition), vol. 4, no. 1, 2017, 88-95, https://doi.org/10.1016/j.jtte.2016.06.001.
  25. Hussain, J., Prathap, B.R., Sharma, A. (2022). “An Improved and Efficient YOLOv4 Method for Object Detection in Video Streaming.” In: Shukla, S., Gao, XZ., Kureethara, J.V., Mishra, D. (eds), Data Science and Security. Lecture Notes in Networks and Systems, vol. 462. Springer, Singapore. https://doi.org/10.1007/978-981-19-2211-4_27
  26. Muhammad Saleem, Sagheer Abbas, Taher M. Ghazal, Muhammad Adnan Khan, Nizar Sahawneh, Munir Ahmad. “Smart cities: Fusion- based intelligent traffic congestion control system for vehicular networks using machine learning techniques.” Egyptian Informatics Journal, 2022. https://doi.org/10.1016/j.eij.2022.03.003.
  27. Yousef, Khalil M., Mamal N. Al-Karaki, and Ali M. Shatnawi. “Intelligent traffic light flow control system using wireless sensors networks.” J. Inf. Sci. Eng., vol. 26, no. 3, 2010, 753-768.
  28. Alharbi, A., Halikias, G., Sen, A.A.A. et al. “A framework for dynamic smart traffic light management system.” Int. J. Inf. Technol. vol. 13, 2021, 1769–1776. https://doi.org/10.1007/s41870-021-00755-2.
DOI: https://doi.org/10.14313/jamris/4-2022/33 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 53 - 61
Submitted on: Apr 26, 2022
Accepted on: Jul 28, 2022
Published on: Oct 20, 2023
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Boppuru Rudra Prathap, Kukatlapalli Pradeep Kumar, Cherukuri Ravindranath Chowdary, Javid Hussain, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.