References
- C. Buckner, P.D. Brown, B.P. O’Neill, F.B. Meyer, “Central Nervous System Tumors”, Symposium on Solid Tumors, Mayo Foundation for Medical Education and Research, vol. 82, no. 10, 2007, 1271–1286.
- K.P. Sridhar, S. Baskar, P.M. Shakeel, V.R.S. Dhulipala, “Developing brain abnormality recognize system using multi-objective pattern producing neural network,” J Ambient Intell Humaniz Comput, vol. 10, no. 4, 2018, 1–8.
- R. Anitha and D.S.S. Raja, “Development of computer-aided approach for brain tumor detection using random forest classifier”, Int J Imaging Syst Technol, vol. 28, 2018, 48–53.
- R. Grant, “Medical management of adult glioma”, in: Management of Adult Glioma in Nursing Practice. London, UK: Springer, 2019, 61–80.
- D.R. Johnson, J.B. Guerin, C. Giannini, J.M. Morris, L.J. Eckel, and T.J. Kaufmann, “2016 updates to the WHO brain tumor classification system: what the radiologist needs to know”, Radiographics, vol. 37, 2019, 2164–2180.
- Kalyani, G., Janakiramaiah, B., Prasad, L.V.N. et al. Efficient crowd counting model using feature pyramid network and ResNeXt. Soft Comput 25, 10497–10507 (2021). https://doi.org/10.1007/s00500-021-05993-x
- S. Banerjee, S. Mitra, F. Masulli, and S. Rovetta, “Deep radiomics for brain tumor detection and classification from multi-sequence MRI”, arXiv preprint arXiv:1903.09240, 2019.
- N. Nida, M. Sharif, M.U.G. Khan, M. Yasmin, S.L. Fernandes, “A framework for automatic colorization of medical imaging”, IIOAB J, vol. 7, supp. 1, 2019, 202–209.
- J. Amin, M. Sharif, Y. Mussarat, T. Saba, M. Raza, “Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions”, Multimed Tools Appl, vol. 79, no. 3, 2019, 1–19.
- S. Naqi, M. Sharif, M. Yasmin, S.L. Fernandes, “Lung nodule detection using polygon approximation and hybrid features from CT images”, Curr Med Imaging Rev, vol. 14, no. 1, 2018, 108–117.
- A. Liaqat, M.A. Khan, J.H. Shah, M. Sharif, Y. Mussarat, S.L. Fernandes, “Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection”, J Mech Med Biol, vol. 18, no. 4, 2018, 1850038.
- M. Sharif, M.A. Khan, M. Faisal, Y. Mussarat, S.L. Fernandes, “A framework for offline signature verification system: best features selection approach”, Pattern Recognit Lett, vol. 139, 2018.
- Ramu, G. A secure cloud framework to share EHRs using modified CP-ABE and the attribute bloom filter. Educ Inf Technol 23, 2213–2233 (2018). https://doi.org/10.1007/s10639-018-9713-7
- M. Raza, M. Sharif, M. Yasmin, M.A. Khan, T. Saba, S.L. Fernandes, “Appearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learning”, Future Gener Comput Syst, vol. 88, 2018, 28–39.
- G.J. Ansari, J.H. Shah, Y. Mussart, M. Sharif, S.L. Fernandes, “A novel machine learning approach for scene text extraction”, Future Gener Comput Syst, vol. 87, no. 10, 2018, 328–340.
- M. Sharif, M. Raza, J.H. Shah, M. Yasmin, S.L. Fernandes, “An overview of biometrics methods”, in: Handbook of Multimedia Information Security: Techniques and Applications. London, UK: Springer, 2019, 15–35.
- R.P. Joseph and C.S. Singh, “Brain tumor MRI image segmentation and detection in image processing”, Int J Res Eng Technol, vol. 3, no. 13, 2014, 1–5.
- Kalyani, G., Janakiramaiah, B., Karuna, A. et al. Diabetic retinopathy detection and classification using capsule networks. Complex Intell. Syst. (2021). https://doi.org/10.1007/s40747-021-00318-9
- Solomon C. and Breckon T., Fundamental of digital image processing: a practical approach with examples in Matlab, Wiley Blackwell: Chichester, West Sussex, 2011.
- N. Sauwen, M. Acou, D.M. Sima, J. Veraart, F. Maes, U. Himmelreich, et al., “Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization”, BMC Med Imaging, vol. 17, no. 1, 2017, 1–14.
- D. Joshi and H. Channe, “A survey on brain tumor detection based on structural mri using machine learning and deep learning techniques”, Int J Sci Technol Res, vol. 9, no. 4, 2020.
- M. Havaei, N. Guizard, H. Larochelle, P.M. Jodoin, “Deep learning trends for focal brain pathology segmentation in MRI”, in: Lecture Notes in Computer Science. London, UK: Springer, 2016, 125–148.
- B. Padmaja, P. V. Narasimha Rao, M. Madhu Bala and E. K. Rao Patro, “A Novel Design of Autonomous Cars using IoT and Visual Features,” 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on, Palladam, India, 2018, pp. 18-21, doi: 10.1109/I-SMAC.2018.8653736.
- C.L. Devasena and M. Hemalatha, “Efficient computer aided diagnosis of abnormal parts detection in magnetic resonance images using hybrid abnormality detection algorithm”. Cent Eur J Comput Sci, vol. 3, no. 3, 2013, 117–128.
- S. Goswami and L.K.P. Bhaiya, “Brain tumor detection using unsupervised learning based neural network”, 2013 International Conference on Communication Systems and Network Technologies, Gwalior, 2013, 573–577.
- S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al. “Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge”, arXiv Prepeint.arXiv:1811.02629, 2018.
- D.S. Marcus, A.F. Fotenos, J.G. Csernansky, J.C. Morris, and R.L. Buckner, “Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults”, J Cogn Neurosci, vol. 22, 2010, 2677–2684. DOI: 10.1162/ jocn.2009.21407
- Dash, S.C.B., Mishra, S.R., Srujan Raju, K. et al. Human action recognition using a hybrid deep learning heuristic. Soft Comput 25, 13079–13092 (2021). https://doi.org/10.1007/s00500-021-06149-7
- H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features”, European Conference on Computer Vision, vol. 3951, 2006, 404–417.
- A.S. Berahas, R.H. Byrd, and J. Nocedal, “Derivative- free optimization of noisy functions via quasi-newton methods,” SIAM J Optimiz, vol. 29, 2019, 965–993.
