Have a personal or library account? Click to login
Automatic Detection of Brain Tumors Using Genetic Algorithms With Multiple Stages in Magnetic Resonance Images Cover

Automatic Detection of Brain Tumors Using Genetic Algorithms With Multiple Stages in Magnetic Resonance Images

Open Access
|Oct 2023

References

  1. C. Buckner, P.D. Brown, B.P. O’Neill, F.B. Meyer, “Central Nervous System Tumors”, Symposium on Solid Tumors, Mayo Foundation for Medical Education and Research, vol. 82, no. 10, 2007, 1271–1286.
  2. K.P. Sridhar, S. Baskar, P.M. Shakeel, V.R.S. Dhulipala, “Developing brain abnormality recognize system using multi-objective pattern producing neural network,” J Ambient Intell Humaniz Comput, vol. 10, no. 4, 2018, 1–8.
  3. R. Anitha and D.S.S. Raja, “Development of computer-aided approach for brain tumor detection using random forest classifier”, Int J Imaging Syst Technol, vol. 28, 2018, 48–53.
  4. R. Grant, “Medical management of adult glioma”, in: Management of Adult Glioma in Nursing Practice. London, UK: Springer, 2019, 61–80.
  5. D.R. Johnson, J.B. Guerin, C. Giannini, J.M. Morris, L.J. Eckel, and T.J. Kaufmann, “2016 updates to the WHO brain tumor classification system: what the radiologist needs to know”, Radiographics, vol. 37, 2019, 2164–2180.
  6. Kalyani, G., Janakiramaiah, B., Prasad, L.V.N. et al. Efficient crowd counting model using feature pyramid network and ResNeXt. Soft Comput 25, 10497–10507 (2021). https://doi.org/10.1007/s00500-021-05993-x
  7. S. Banerjee, S. Mitra, F. Masulli, and S. Rovetta, “Deep radiomics for brain tumor detection and classification from multi-sequence MRI”, arXiv preprint arXiv:1903.09240, 2019.
  8. N. Nida, M. Sharif, M.U.G. Khan, M. Yasmin, S.L. Fernandes, “A framework for automatic colorization of medical imaging”, IIOAB J, vol. 7, supp. 1, 2019, 202–209.
  9. J. Amin, M. Sharif, Y. Mussarat, T. Saba, M. Raza, “Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions”, Multimed Tools Appl, vol. 79, no. 3, 2019, 1–19.
  10. S. Naqi, M. Sharif, M. Yasmin, S.L. Fernandes, “Lung nodule detection using polygon approximation and hybrid features from CT images”, Curr Med Imaging Rev, vol. 14, no. 1, 2018, 108–117.
  11. A. Liaqat, M.A. Khan, J.H. Shah, M. Sharif, Y. Mussarat, S.L. Fernandes, “Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection”, J Mech Med Biol, vol. 18, no. 4, 2018, 1850038.
  12. M. Sharif, M.A. Khan, M. Faisal, Y. Mussarat, S.L. Fernandes, “A framework for offline signature verification system: best features selection approach”, Pattern Recognit Lett, vol. 139, 2018.
  13. Ramu, G. A secure cloud framework to share EHRs using modified CP-ABE and the attribute bloom filter. Educ Inf Technol 23, 2213–2233 (2018). https://doi.org/10.1007/s10639-018-9713-7
  14. M. Raza, M. Sharif, M. Yasmin, M.A. Khan, T. Saba, S.L. Fernandes, “Appearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learning”, Future Gener Comput Syst, vol. 88, 2018, 28–39.
  15. G.J. Ansari, J.H. Shah, Y. Mussart, M. Sharif, S.L. Fernandes, “A novel machine learning approach for scene text extraction”, Future Gener Comput Syst, vol. 87, no. 10, 2018, 328–340.
  16. M. Sharif, M. Raza, J.H. Shah, M. Yasmin, S.L. Fernandes, “An overview of biometrics methods”, in: Handbook of Multimedia Information Security: Techniques and Applications. London, UK: Springer, 2019, 15–35.
  17. R.P. Joseph and C.S. Singh, “Brain tumor MRI image segmentation and detection in image processing”, Int J Res Eng Technol, vol. 3, no. 13, 2014, 1–5.
  18. Kalyani, G., Janakiramaiah, B., Karuna, A. et al. Diabetic retinopathy detection and classification using capsule networks. Complex Intell. Syst. (2021). https://doi.org/10.1007/s40747-021-00318-9
  19. Solomon C. and Breckon T., Fundamental of digital image processing: a practical approach with examples in Matlab, Wiley Blackwell: Chichester, West Sussex, 2011.
  20. N. Sauwen, M. Acou, D.M. Sima, J. Veraart, F. Maes, U. Himmelreich, et al., “Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization”, BMC Med Imaging, vol. 17, no. 1, 2017, 1–14.
  21. D. Joshi and H. Channe, “A survey on brain tumor detection based on structural mri using machine learning and deep learning techniques”, Int J Sci Technol Res, vol. 9, no. 4, 2020.
  22. M. Havaei, N. Guizard, H. Larochelle, P.M. Jodoin, “Deep learning trends for focal brain pathology segmentation in MRI”, in: Lecture Notes in Computer Science. London, UK: Springer, 2016, 125–148.
  23. B. Padmaja, P. V. Narasimha Rao, M. Madhu Bala and E. K. Rao Patro, “A Novel Design of Autonomous Cars using IoT and Visual Features,” 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on, Palladam, India, 2018, pp. 18-21, doi: 10.1109/I-SMAC.2018.8653736.
  24. C.L. Devasena and M. Hemalatha, “Efficient computer aided diagnosis of abnormal parts detection in magnetic resonance images using hybrid abnormality detection algorithm”. Cent Eur J Comput Sci, vol. 3, no. 3, 2013, 117–128.
  25. S. Goswami and L.K.P. Bhaiya, “Brain tumor detection using unsupervised learning based neural network”, 2013 International Conference on Communication Systems and Network Technologies, Gwalior, 2013, 573–577.
  26. S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al. “Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge”, arXiv Prepeint.arXiv:1811.02629, 2018.
  27. D.S. Marcus, A.F. Fotenos, J.G. Csernansky, J.C. Morris, and R.L. Buckner, “Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults”, J Cogn Neurosci, vol. 22, 2010, 2677–2684. DOI: 10.1162/ jocn.2009.21407
  28. Dash, S.C.B., Mishra, S.R., Srujan Raju, K. et al. Human action recognition using a hybrid deep learning heuristic. Soft Comput 25, 13079–13092 (2021). https://doi.org/10.1007/s00500-021-06149-7
  29. H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features”, European Conference on Computer Vision, vol. 3951, 2006, 404–417.
  30. A.S. Berahas, R.H. Byrd, and J. Nocedal, “Derivative- free optimization of noisy functions via quasi-newton methods,” SIAM J Optimiz, vol. 29, 2019, 965–993.
DOI: https://doi.org/10.14313/jamris/4-2022/31 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 36 - 43
Submitted on: Sep 1, 2021
Accepted on: Aug 22, 2022
Published on: Oct 20, 2023
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Karthik Annam, G Sunil Kumar, P Ashok Babu, Narsaiah Domala, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.