References
- A. Abujabal, C. D. Bovi, S.-R. Ryu, T. Gojayev, F. Triefenbach, and Y. Versley, “Continuous model improvement for language understanding with machine translation”. In: North American Chapter of the Association for Computational Linguistics, 2021.
- P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Guided open vocabulary image captioning with constrained beam search”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017, 936–945.
- E. Bastianelli, A. Vanzo, P. Swietojanski, and V. Rieser, “SLURP: A Spoken Language Understanding Resource Package”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020.
- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners”, Advances in neural information processing systems, vol. 33, 2020, 1877–1901.
- I. Casanueva, I. Vulić, G. Spithourakis, and P. Budzianowski, “Nlu++: A multi-label, slotrich, generalisable dataset for natural language understanding in task-oriented dialogue”. In: Findings of the Association for Computational Linguistics: NAACL 2022, 2022, 1998–2013.
- X. Cheng, W. Xu, Z. Yao, Z. Zhu, Y. Li, H. Li, and Y. Zou, “Fc-mtlf: a fine-and coarse-grained multitask learning framework for cross-lingual spoken language understanding”. In: Proceedings of Interspeech, 2023.
- A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, É. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsupervised cross-lingual representation learning at scale”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, 8440–8451.
- J. FitzGerald, C. Hench, C. Peris, S. Mackie, K. Rottmann, A. Sanchez, A. Nash, L. Urbach, V. Kakarala, R. Singh, S. Ranganath, L. Crist, M. Britan, W. Leeuwis, G. Tur, and P. Natarajan, “MASSIVE: A 1M-example multilingual natural language understanding dataset with 51 typologically-diverse languages”. In: A. Rogers, J. Boyd-Graber, and N. Okazaki, eds., Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Canada, 2023, 4277–4302, 10.18653/v1/2023.acl-long.235.
- M. Fomicheva, L. Specia, and F. Guzmán, “Multihypothesis machine translation evaluation”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, 1218–1232.
- J. Gaspers, P. Karanasou, and R. Chatterjee, “Selecting machine-translated data for quick bootstrapping of a natural language understanding system”. In: Proceedings of NAACL-HLT, 2018, 137–144.
- R. Goel, W. Ammar, A. Gupta, S. Vashishtha, M. Sano, F. Surani, M. Chang, H. Choe, D. Greene, C. He, R. Nitisaroj, A. Trukhina, S. Paul, P. Shah, R. Shah, and Z. Yu, “PRESTO: A multilingual dataset for parsing realistic task-oriented dialogs”. In: H. Bouamor, J. Pino, and K. Bali, eds., Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, 2023, 10820–10833, 10.18653/v1/2023.emnlp-main.667.
- S. Gupta, R. Shah, M. Mohit, A. Kumar, and M. Lewis, “Semantic parsing for task oriented dialog using hierarchical representations”. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, 2787–2792.
- A. Huminski, F. Liausvia, and A. Goel, “Semantic roles in verbnet and framenet: Statistical analysis and evaluation”. In: Computational Linguistics and Intelligent Text Processing: 20th International Conference, CICLing 2019, La Rochelle, France, April 7–13, 2019, Revised Selected Papers, Part II, 2023, 135–147.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”. In: Proc. of the 6th International Conference on Learning Representations (ICRL 2015), San Diego, CA, 2015.
- B. Levin, English verb classes and alternations: A preliminary investigation, University of Chicago press, 1993.
- H. Li, A. Arora, S. Chen, A. Gupta, S. Gupta, and Y. Mehdad, “Mtop: A comprehensive multilingual task-oriented semantic parsing benchmark”. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 2021, 2950–2962.
- O. Majewska and A. Korhonen, “Verb classification across languages”, Annual Review of Linguistics, vol. 9, 2023.
- M. Moneglia, “Natural language ontology of action: A gap with huge consequences for natural language understanding and machine translation”. In: Language and Technology Conference, 2011, 379–395.
- L. Qin, Q. Chen, T. Xie, Q. Li, J.-G. Lou, W. Che, and M.-Y. Kan, “Gl-clef: A global-local contrastive learning framework for cross-lingual spoken language understanding”. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, 2677–2686.
- S. Schuster, S. Gupta, R. Shah, and M. Lewis, “Cross-lingual transfer learning for multilingual task oriented dialog”. In: Proceedings of NAACLHLT, 2019, 3795–3805.
- R. Sennrich, B. Haddow, and A. Birch, “Improving neural machine translation models with monolingual data”. In: 54th Annual Meeting of the Association for Computational Linguistics, 2016, 86–96.
- M. Sowański. “iva_mt_wslot-m2m100_418m-enpl”, 2023. Hugging Face Model Hub.
- M. Sowański. “iva_mt_wslot-m2m100_418m-enpl”, 2023. Hugging Face Model Hub.
- M. Sowański and A. Janicki, “Leyzer: A dataset for multilingual virtual assistants”. In: P. Sojka, I. Kopeček, K. Pala, and A. Horák, eds., Proc. Conference on Text, Speech, and Dialogue (TSD2020), Brno, Czechia, 2020, 477–486.
- M. Sowański and A. Janicki, “Optimizing machine translation for virtual assistants: Multi-variant generation with verbnet and conditional beam search”. In: 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS), 2023, 1149–1154, 10.15439/2023F8601.
- L. Sun, A. Korhonen, and Y. Krymolowski, “Verb class discovery from rich syntactic data”, Lecture Notes in Computer Science, vol. 4919, 2008, 16.
- D. R. Traum, Speech acts for dialogue agents, Springer, 1999, 169–201.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need”, Advances in neural information processing systems, vol. 30, 2017.
- W. Xu, B. Haider, and S. Mansour, “End-to-end slot alignment and recognition for cross-lingual NLU”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, 5052–5063.
