Have a personal or library account? Click to login
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: An Evaluation Cover

References

  1. World Health Organization, World report on hearing. Geneva: World Health Organization, 2021.
  2. R. W. Baloh and J. C. Jen, “Hearing and Equilibrium,” Jan. 2012, doi: 10.1016/b978-1-4377-1604-7.00436-x.
  3. M. Kassjański et al., “Detecting type of hearing loss with different AI classification methods: a performance review,” Computer Science and Information Systems (FedCSIS), 2019 Federated Conference, Sep. 2023, doi: 10.15439/2023f3083.
  4. C. Belitz, H. Ali, and J. Hansen, “A Machine Learning Based Clustering Protocol for Determining Hearing Aid Initial Configurations from Pure- Tone Audiograms,” PubMed Central, Sep. 2019, doi: 10.21437/interspeech.2019-3091.
  5. F. Charih, M. Bromwich, A. E. Mark, R. Lefrançois, and J. R. Green, “Data-Driven Audiogram Classification for Mobile Audiometry,” Scientific Reports, vol. 10, no. 1, Mar. 2020, doi: 10.1038/s41598-020-60898-3.
  6. A. Elkhouly et al., “Data-driven audiogram classi fier using data normalization and multi-stage feature selection,” Scientific Reports, vol. 13, no. 1, Feb. 2023, doi: 10.1038/s41598-022-25 411-y.
  7. E. Elbaşı and M. Obali, “Classification of Hearing Losses Determined through the Use of Audiometry Using Data Mining,” Conference: 9th International Conference on Electronics,Computer and Computation.
  8. M. G. Crowson et al., “AutoAudio: Deep Learning for Automatic Audiogram Interpretation,” Journal of Medical Systems, vol. 44, no. 9, Aug. 2020, doi: 10.1007/s10916-020-01627-1.
  9. H. Shojaeemend and H. Ayatollahi, “Automated Audiometry: A Review of the Implementation and Evaluation Methods,” Healthcare Informatics Research, vol. 24, no. 4, pp. 263–275, Oct. 2018, doi: 10.4258/hir.2018.24.4.263.
  10. Guidelines for Manual Pure-Tone Threshold Audiometry,” American Speech-Language- Hearing Association. https://www.asha.org/policy/GL2005-00014/ (accessed Dec. 5, 2023).
  11. M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv.org, 2014. https://arxiv.org/abs/1411.1784.
  12. Z. Zhao, A. Kunar, Van, R. Birke, and L. Y. Chen, “CTAB-GAN: Effective Table Data Synthesizing,” arXiv (Cornell University), Feb. 2021.
  13. L. Xu et al., “Modeling Tabular Data using Conditional GAN.” Available: https://proceedings.neurips.cc/paper_files/paper/2019/file/254ed 7d2de3b23ab10936522dd547b78-Paper.pdf (accessed Dec 5, 2023).
  14. A. M. Annaswamy and Massoud Amin, IEEE Vision for Smart Grid Controls: 2030 and Beyond. Piscataway, Usa Ieee, 2013.
  15. M. Shanker, M. Y. Hu, and M. S. Hung, “Effect of data standardization on neural network training,” Omega, vol. 24, no. 4, pp. 385–397, Aug. 1996, doi: 10.1016/0305-0483(96)00010-2.
  16. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
  17. I. Banerjee et al., “Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification,” Artificial Intelligence in Medicine, vol. 97, pp. 79–88, Jun. 2019, doi: 10.1016/j.artmed.2018.11.004.
  18. “Recurrent Neural Networks in Medical Data Analysis and Classifications,” Applied Computing in Medicine and Health, pp. 147–165, Jan. 2016, doi: 10.1016/B978-0-12-803468-2.00007-2.
  19. C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison of performance measures for classification,” Pattern Recognition Letters, vol. 30, no. 1, pp. 27–38, Jan. 2009, doi: 10.1016/j.patrec.2008.08.010.
  20. D. J. Hand and R. J. Till, “A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems,” Machine Learning, vol. 45, no. 2, pp. 171–186, 2001, doi: 10.1023/a:1010920819831.
  21. M. Kassjański, M. Kulawiak, and Tomasz Przewoźny, “Development of an AI-based audiogram classification method for patient referral,” Computer Science and Information Systems (FedCSIS), 2019 Federated Conference on, Sep. 2022, doi: 10.15439/2022f66.
  22. L. B. V. de Amorim, G. D. C. Cavalcanti, and R. M. O. Cruz, “The choice of scaling technique matters for classification performance,” Applied Soft Computing, vol. 133, p. 109924, Jan. 2023, doi: 10.1016/j.asoc.2022.109924.
DOI: https://doi.org/10.14313/jamris/3-2024/19 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 28 - 38
Submitted on: Dec 9, 2023
Accepted on: Mar 26, 2024
Published on: Sep 12, 2024
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Michał Kassjański, Marcin Kulawiak, Tomasz Przewoźny, Dmitry Tretiakow, Jagoda Kuryłowicz, Andrzej Molisz, Krzysztof Koźmiński, Aleksandra Kwaśniewska, Paulina Mierzwińska‑Dolny, Miłosz Grono, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.