Have a personal or library account? Click to login
Skin Lesion Detection Using Deep Learning Cover

References

  1. N. Gessert, M. Nielsen, M. Shaikh, R. Werner, and A. Schlaefer, “Skin sion classification using ensembles of multi-resolution EfficientNets with meta data,” MethodsX, vol. 7, p. 100864, 2020, DOI: 10.1016/j.mex.2020.100864.
  2. J. Yap, W. Yolland, and P. Tschandl, “Multimodal skin lesion classification using deep learning,” Exp. Dermatol., vol. 27, no. 11, pp. 1261–1267, 2018, DOI: 10.1111/exd. 13777.
  3. P. Mirunalini, A. Chandrabose, V. Gokul, and S. M. Jaisakthi, “Deep Learning for Skin Lesion Classification,” 2017, [Online]. Available: http://arxiv.org/abs/1703.04364.
  4. T. C. Pham, C. M. Luong, M. Visani, and V. D. Hoang, “Deep CNN and Data Augmentation for Skin Lesion Classification,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10752 LNAI, no. June, pp. 573–582, 2018, DOI: 10.1007/978-3-319-75420-8_54.
  5. T. Majtner, S. Yildirim-Yayilgan, and J. Y. Hardeberg, “Combining deep learning and hand-crafted features for skin lesion classification,” 2016 6th Int. Conf. Image Process. Theory, Tools Appl. IPTA 2016, no. December, 2017, DOI: 10.1109/IPTA.2016.7821017.
  6. A. Mahbod, G. Schaefer, I. Ellinger, R. Ecker, A. Pitiot, and C. Wang, “Fusing fine-tuned deep features for skin lesion classification,” Comput. Med. Imaging Graph., vol. 71, pp. 19–29, 2019, DOI: 10.1016/j.compmedimag.2018.10.007.
  7. J. Zhang, Y. Xie, Y. Xia, and C. Shen, “Attention Residual Learning for Skin Lesion Classification,” IEEE Trans. Med. Imaging, vol. 38, no. 9, pp. 2092–2103, 2019, doi: 10.1109/TMI.2019.2893944.
DOI: https://doi.org/10.14313/jamris/3-2022/24 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 56 - 64
Submitted on: May 12, 2022
Accepted on: Jul 28, 2022
Published on: Sep 6, 2023
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Rajit Chandra, Mohammadreza Hajiarbabi, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.