References
- N. Gessert, M. Nielsen, M. Shaikh, R. Werner, and A. Schlaefer, “Skin sion classification using ensembles of multi-resolution EfficientNets with meta data,” MethodsX, vol. 7, p. 100864, 2020, DOI: 10.1016/j.mex.2020.100864.
- J. Yap, W. Yolland, and P. Tschandl, “Multimodal skin lesion classification using deep learning,” Exp. Dermatol., vol. 27, no. 11, pp. 1261–1267, 2018, DOI: 10.1111/exd. 13777.
- P. Mirunalini, A. Chandrabose, V. Gokul, and S. M. Jaisakthi, “Deep Learning for Skin Lesion Classification,” 2017, [Online]. Available: http://arxiv.org/abs/1703.04364.
- T. C. Pham, C. M. Luong, M. Visani, and V. D. Hoang, “Deep CNN and Data Augmentation for Skin Lesion Classification,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10752 LNAI, no. June, pp. 573–582, 2018, DOI: 10.1007/978-3-319-75420-8_54.
- T. Majtner, S. Yildirim-Yayilgan, and J. Y. Hardeberg, “Combining deep learning and hand-crafted features for skin lesion classification,” 2016 6th Int. Conf. Image Process. Theory, Tools Appl. IPTA 2016, no. December, 2017, DOI: 10.1109/IPTA.2016.7821017.
- A. Mahbod, G. Schaefer, I. Ellinger, R. Ecker, A. Pitiot, and C. Wang, “Fusing fine-tuned deep features for skin lesion classification,” Comput. Med. Imaging Graph., vol. 71, pp. 19–29, 2019, DOI: 10.1016/j.compmedimag.2018.10.007.
- J. Zhang, Y. Xie, Y. Xia, and C. Shen, “Attention Residual Learning for Skin Lesion Classification,” IEEE Trans. Med. Imaging, vol. 38, no. 9, pp. 2092–2103, 2019, doi: 10.1109/TMI.2019.2893944.
