References
- Cristina Balla Rita Pavasini Roberto Ferrari, “Treatment of Angina: Where Are We?”, Cardiology journal, vol.140, 2018, pp.52–67 10.1159/000487936
- Amanda Williams, Kenneth D. Craig, “Updating the definition of pain” PAIN, vol.157, no.11, 2016, pp. 2420-2423, 10.1097/j.pain.
- George R. Hansen, Jon Streltzer, “Psychology of pain”, Emerg Med Clin N, vol. 23, 2005, pp.339–348, 10.1016/j.emc.2004.12.005.
- Steven J. Linton, William S. Shaw,” Impact of Psychological Factors in the Experience of Pain” Physical Therapy, vol.91, no.5, 2011, pp.700-711, 10.2522 /ptj. 20100330.
- James C Eisenach, “Textbook of Pain, 4th edition”, vol.12, no.3, July 2000, 276-278.
- Xiaojing Xu, Jeannie S Huang, Virginia R De Sa, “Pain Evaluation in Video using Extended Multitask Learning from Multidimensional Measurements”, Proceedings of Machine Learning for Health NeurIPS Workshop, PMLR 116: 2020, pp.141-154.
- Philipp Werner; Daniel Lopez-M, Walter St, “Automatic Recognition Methods Supporting Pain Assessment: A Survey”, IEEE Trans on Affective Computing, vol.13, no.1, Oct 2019, pp. 530-552, 10.1109/TAFFC.2019.2946774.
- Johan Herlitz, Ake Hjalmarson, Finn W, “Treatment of pain in acute myocardial infarction,” British Heart Journal, vol.61, 1989, pp. 9-13, 10.1136/hrt.61.1.9.
- Richard Gorlin, “Pathophysiology of Cardiac Pain” Circulation, vol.32, July 1965
- James H Behrmann, Harold R Hipp, Howard E Heyer, “Pain Patterns in Acute Myocardial Infarction” American Journal of Medicine, vol. 9, no.2, Aug 1950, pp.156-163, 10.1016 0002-9343(50)90018-0.
- J A Dalton L Brown, J Carlson, R McNutt, S M Greer “An evaluation of facial expression displayed by patients with chest pain”, vol. 28, no.3, May-Jun 1999, pp.168-74, 10.1016/s0147-9563(99)70056-7
- Patrick Thiam, Hans A Kesler, “Two-Stream Attention Network for Pain Recognition from Video Sequences”, Sensors, vol. 20, no.3, pp.839 2020, 10.3390/s20030839
- Luca Greco, Gennalo Percannella, Pierluigi Ritrovato, “Trends in iot based solutions for health care moving ai to the edge”, Pattern Recognition Letters, vol.135, July 2020, pp. 346-353, 10.1016/j.patrec.2020.05.016.
- Massimo Merenda, Carlo Porcaro, Demetrio Lero, “Edge machine learning for ai-enabled iot devices a review”, Sensors, Vol. 20, no.9, 2020, pp.25-33, 10.3390/s20092533.
- Ghulam Muhammed, Mohammed F Alhamid, “Edge computing with cloud for voice disorder assessment and treatment” IEEE Communications Magazine, vol. 56, no. 4, April 2018, pp. 60-65 10.1109/MCOM.2018.1700790.
- J. P. Queralta, T. N. Gia, H. Tenhunen and T. West-erlund, “Edge-AI in LoRa-based Health Monitoring: Fall Detection System with Fog Computing and LSTM Recurrent Neural Networks,” 2019 42nd International Conference on Telecommunications and Signal Processing, Budapest, Hungary, 2019, pp. 601-604, doi: 10.1109/TSP.2019.8768883.
- X. Dai, I. Spasić, B. Meyer, S. Chapman and F. Andres, “Machine Learning on Mobile: An On-device Inference App for Skin Cancer Detection,” 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 2019, pp. 301-305, doi: 10.1109/FMEC.2019.8795362.
- Dianbo Liu, Dan Cheng, Timothy T Houle, Lucy Chen, Wei Zhang, Hao Deng, “Machine learning methods for automatic pain assessment using facial expression information”, vol.97, no. 49, Medicine 2018, 10.1097/MD. 0000000000013421.
- Teena Hassan, Dominik Seuß, Johannes Wollenberg, Katharina Weitz, Miriam Kunz, Stefan Lautenbacher, Jens-Uwe Garbas, Ute Schmid, “Automatic Detection of Pain from Facial Expressions: A Survey” IEEE Transactions on pattern analysis and machine intelligence, 2019, 10.1109/TPAMI.2019.2958341
- M Adibuzzaman; Colin Ostberg; S Ahamed, Richard P; “Assessment of Pain Using Facial Pictures Taken with a Smartphone”, IEEE 39th Annual computer Software and Applications conference, vol.2, July 2015, pp. 726-731. 10.1109/OMPSAC.2015.150.
- Sajad Ashouri, Mohsen Abedi, Masoud Abdollahi, “A novel approach to spinal 3-D kinematic assessment using inertial sensors: Towards effective quantitative evaluation of low back pain in clinical settings”, Comput Biol Med, vol.89, Aug 2017, pp.144-149, 10.1016/j.compbiomed.2017.08.002.
- M. A. Haque et al., “Deep Multimodal Pain Recognition: A Database and Comparison of Spatio-Temporal Visual Modalities,” 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 2018, pp. 250-257, doi: 10.1109/FG.2018.00044.
- J. J. Rivas et al., “Automatic recognition of pain, anxiety, engagement and tiredness for virtual rehabilitation from stroke: A marginalization approach,” 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), San Antonio, TX, USA, 2017, pp. 159-164, doi: 10.1109/ACIIW.2017.8272607.
- Lei Yang,Shuang Wang, Xiaoqian Jiang, “PATTERN: Pain Assessment for patients who can’t tell using Restricted Boltzmann machine,” BMC Medical Informatics and Decision Making, vol.73, July 2016, pp.190-208, 10.1186/s12911-016-0317-0.
- Zhanli Chen, Rashid Ansari, Diana J Wilkie, “Automated Pain Detection from Facial Expressions using FACS: A Review”, Nov 2018, pp. 1-19.
- Kenneth M Prkachin 1, Patricia E Solomon, “The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain”, Pain, vol.139, Oct 2008, pp. 267-74, 10.1016/j.pain.2008.04.010.
- Patrick Lucey, Jeffrey F. Cohn, Kenneth M. Prkachin “Painful data: The UNBC-McMaster shoulder pain expression archive database”, 2011 IEEE International Conference on Automatic Face & Gesture Recognition, March 2011, pp. 1-9, 10.1109/FG.2011.5771462.
- Min S. H. Aung, Sebastian Kaltwang, Bernardino Romera-Paredes, “The Automatic Detection of Chronic Pain-Related Expression: Requirements, Challenges and the Multimodal Emo Pain Dataset”, 2016 IEEE Transactions on Affective Computing, vol.7, no. 4, Oct 2016, pp.435-451, 10.1109/TAFFC.2015.246283.
- S. Walter, S Gruss, H Ehleiter, “The biovid heat pain database data for the advancement and systematic validation of an automated pain recognition system,” 2013 IEEE International Conference on Cybernetics (CYBCO), Lausanne, Switzerland, 2013, pp. 128-131, doi: 10.1109/CYBConf.2013.6617456.
- Mittal V K., “Discriminating the Infant Cry Sounds Due to Pain vs. Discomfort Towards Assisted Clinical Diagnosis”, SLPAT 2016- on Speech and Language Processing for Assistive Technologies, 2016, pp.37-42, 10.21437/SLPAT. 2016-7.
- Xing Zhang, Lijun Y, “BP4D-Spontaneous: a high-resolution spontaneous 3D dynamic facial expression database”, Image and Vision Computing, vol.32, no. 10, Oct 2014, pp.692-706, 10.1016/j.imavis.2014.06.002.
- Maria Velana, Sascha G, G Layher, “The Sense Emotion Database: A Multimodal Database for the Development and Systematic Validation of an Automatic Pain- and Emotion-Recognition System”, Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction, vol. 10183, June 2017, pp. 127-139.
- Ruijing Yang, Shujun Tong, Miguel Bordallo “On Pain Assessment from Facial Videos Using Spatio-Temporal Local Descriptors”, IEEE 6th International Conference on Image Processing Theory, Tools and Applications, IEEE 2016, pp.1-6. 10.1109/IPTA.2016.7820930.
- Juho Kannala, Esa Rahtu, “BSIF: Binarized Statistical Image Features”, Proceedings of 21st International Conference on Pattern Recognition, ICPR2012, Nov 2012, pp.1363 – 1366.
- Ghazal Bargshady, Xujuan Zhou, Ravinesh “Enhanced deep learning algorithm development to detect pain intensity from facial expression images”, Expert systems with applications, vol.149, 1 July 2020,
- Jing Zhou; Xiaopeng Hong “Recurrent Convolutional Neural Network Regression for Continuous Pain Intensity Estimation in Video” 2016 IEEE Conf on Computer Vision and Pattern Recognition, 10.1109/CVPRW.2016.191.
- Marco Bellantonio, Mohammad A. Haque, Pau Rodriguez, “Spatio-temporal Pain Recognition in CNN-Based Super-Resolved Facial Images” FFER 2016: Video Analytics. Face and Facial Expression Recognition and Audience Measurement, March 2017, pp.151-162.
- Pau Rodriguez, Guillem C, Jordi Gonalez “Deep Pain: Exploiting long short Term Memory Networks for facial expression classification” IEEE Transactions on Cybernetics, Feb 2017, pp.1-11, 10.1109/tcyb.2017.2662199.
- M. Tavakolian and A. Hadid, “Deep Binary Representation of Facial Expressions: A Novel Framework for Automatic Pain Intensity Recognition,” 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018, pp. 1952-1956, doi: 10.1109/ICIP.2018.8451681.
- Patrick Thiam, Hans A. Kestler, Friedhelm Schwenker “Two-Stream Attention Network for Pain Recognition from Video Sequences” Sensors, vol. 20, no.3, 2020, 10.3390/s20030839.
- Xiaojing Xu, Jeannie S. Huang, Virginia R. de Sa, “Pain Evaluation in Video using Extended Multitask Learning from Multidimensional Measurements”, Proceedings of Machine Learning Research, vol.116, 2020, pp.141–154.
- F. Saxen, P. Werner, S. Handrich, E. Othman, L. Dinges and A. Al-Hamadi, “Face Attribute Detection with MobileNetV2 and NasNet- Mobile,” 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 2019, pp. 176-180, doi: 10.1109/ISPA.2019.8868585.
- Min-Kook Choi, Jaehyung Park, Heechul Jung “Fast and Accurate Convolutional Object Detectors for Real-time Embedded Platforms” Computer Vision and Pattern Recognition, 2019, arXiv:1909.10798.
- Jiaxing Li, Dexiang Zhang, Jinging Zhang “Facial Expression Recognition with Faster R-CNN”, Procedia Computer Science, vol.107, 2017, pp.135-140, 10.1016/j.procs. 2017.03.069.
- Cho, Y. et al. (2020) ‘Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography’, Scientific Reports 2020 10:1. Nature Publishing Group, vol.10, no.1, pp.1–10. 10.1038/s41598-020-77599-6.
- Mandair, D. ‘Prediction of incident myocardial infarction using machine learning applied to harmonized electronic health record data’, BMC Medical Informatics and Decision Making. BioMed Central, vol.20, no.1, 2020, pp.1–10. 10.1186/S12911-020-01268-X.
- Kwon, J. ‘Deep-learning-based risk stratification for mortality of patients with acute myocardial infarction’, PLOS ONE. Public Library of Science, vol.14, no.10, 10.1371/JOURNAL. PONE.0224502
- Lui, H. W. and Chow, K. L. (2018) ‘Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices’, Informatics in Medicine Unlocked. Elsevier, vol.13, pp.26–33. 10.1016/J.IMU.2018.08.002
- Jyoti Metan, A.Y. Prasad, K.S. Ananda Kumar et al. “Cardiovascular MRI image analysis by using the bio inspired (sand piper optimized) fully deep convolutional network (Bio-FDCN) architecture for an automated detection of cardiac disorders” Biomedical Signal Processing and Control, vol.70, 2021, 10.1016/j.bspc.2021.103002
- Howard, Andrew Zhu, Menglong Chen, Bo Kalenichenko, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, 2017, pp.1-9. arXiv preprint ar Xiv:1704.04861.
- Wei Liu, Dragomir Anguelov, Dumitru Erhan, “SSD: Single Shot MultiBox Detector” Computer Vision and Pattern Recognition, 2016, 10.1007/978-3-319-46448-02.
- M. Kunz, D. Meixner, S. Lautenbacher, “Facial muscle movements encoding pain–a systematic review,” Pain, vol.160, no. 3, March 2019, pp.535–549.
- Wilkie, Diana J. “Facial Expressions of Pain in Lung Cancer” Analgesia, vol.1, no.2, 1995, pp.91-99, 10.3727/107156995819564301.
- P. Werner, D. Lopez-Martinez, S. Walter, A. Al-Hamadi, S. Gruss and R. W. Picard, “Automatic Recognition Methods Supporting Pain Assessment: A Survey,” in IEEE Transactions on Affective Computing, vol. 13, no. 1, pp. 530-552, 1 Jan.-March 2022, doi: 10.1109/TAFFC.2019.2946774.
- Pau Rodriguez; Guillem Cucurull; Jordi Gonzàlez P. “Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification,” in IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3314-3324, May 2022, doi: 10.1109/TCYB.2017.2662199.
- Lin, Zitnick, Doll, “Microsoft COCO: Common Objects in Context”, Computer Vision, ECCV, vol. 8693, 2014, pp. 740-755.
