Have a personal or library account? Click to login
Integrated and Deep Learning–Based Social Surveillance System: a Novel Approach Cover

Integrated and Deep Learning–Based Social Surveillance System: a Novel Approach

Open Access
|Sep 2023

Abstract

In industry and research, big data applications are gaining a lot of traction and space. Surveillance videos contribute significantly to big unlabelled data. The aim of visual surveillance is to understand and determine object behavior. It includes static and moving object detection, as well as video tracking to comprehend scene events. Object detection algorithms may be used to identify items in any video scene. Any video surveillance system faces a significant challenge in detecting moving objects and differentiating between objects with same shapes or features. The primary goal of this work is to provide an integrated framework for quick overview of video analysis utilizing deep learning algorithms to detect suspicious activity. In greater applications, the detection method is utilized to determine the region where items are available and the form of objects in each frame. This video analysis also aids in the attainment of security. Security may be characterized in a variety of ways, such as identifying theft or violation of covid protocols. The obtained results are encouraging and superior to existing solutions with 97% accuracy.

DOI: https://doi.org/10.14313/jamris/3-2022/22 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 30 - 39
Submitted on: Apr 6, 2022
Accepted on: May 3, 2022
Published on: Sep 6, 2023
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Ratnesh Litoriya, Dev Ramchandani, Dhruvansh Moyal, Dhruv Bothra, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.