X. Wang, J. Qi, Y. Yang, and P. Yang. “A Survey of Disease Progression Modeling Techniques for Alzheimer’s Diseases,” 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), 2019, pp. 1237–1242, doi: 10.1109/INDIN41052.2019.8972091.
M. F. Folstein, S. E. Folstein, P. R. McHugh. “Minimental state. A practical method for grading the cognitive state of patients for the clinician,” J Psychiatr Res., vol. 12, no. 3, pp. 189–98, 1975.
L. W. Chu, K. Chiu, C. Hui, K. Yu, W. J. Tsui, and P. Lee. “The reliability and validity of the Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS-Cog) among the elderly Chinese in Hong Kong,” Ann Acad. Med. Singapore, vol. 29, no. 4, pp. 474–85, Jul. 2000.
K. R. Baskaran, V. Sanjay. “Deep learning based early diagnosis of Alzheimer’s disease using Semi Supervised GAN,” Annals of the Romanian Society for Cell Biology, pp. 7391–7400, 2021.
Z. Deng, P. Yang, Y. Zhao, X. Zhao, and F. Dong. “Life-Logging Data Aggregation Solution for Interdisciplinary Healthcare Research and Collaboration,” 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, 2015, pp. 2315–2320, doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.342.
C. Xie, P. Yang, and Y. Yang. “Open Knowledge Accessing Method in IoT-Based Hospital Information System for Medical Record Enrichment,” in: IEEE Access, vol. 6, pp. 15202–15211, 2018, doi: 10.1109/ACCESS.2018.2810837.
J. Qi, P. Yang, A. Waraich, Z. Deng, Y. Zhao, and Y. Yang. “Examining sensor-based physical activity recognition and monitoring for healthcare using Internet of Things: A systematic review,” Journal of Biomedical Informatics, vol. 87, pp. 138–153, 2018. doi: 10.1016/j.jbi. 2018.09.002.
P. Yang, et al. “Lifelogging Data Validation Model for Internet of Things Enabled Personalized Healthcare,” in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 1, pp. 50–64, Jan. 2018, doi: 10.1109/TSMC.2016. 2586075.
J. Wan, et al. “Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer’s disease,” 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 940–947, doi: 10.1109/CVPR.2012.6247769.
J. Wan, et al. “Identifying the Neuroanatomical Basis of Cognitive Impairment in Alzheimer’s Disease by Correlation- and Nonlinearity-Aware Sparse Bayesian Learning,” in IEEE Transactions on Medical Imaging, vol. 33, no. 7, pp. 1475–1487, July 2014, doi: 10.1109/TMI.2014.231 4712.
R. Sukkar, E. Katz, Y. Zhang, D. Raunig, and B. T. Wyman. “Disease progression modeling using Hidden Markov Models,” 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 2845–2848, doi: 10.1109/EMBC.2012.6346556.
J. Taeho, N. Kwangsik, A. J. Saykin. “Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data,” Frontiers in Aging Neuroscience, vol. 11, 2019, p. 220. doi: 10.3389/fnagi.2019.00220.
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al. “Generative adversarial networks,” in Communications of the ACM, vol. 63, no. 11, pp. 139–144, November 2020. doi: 10.1145/3422622.
S. Al-Shoukry, T. H. Rassem, and N. M. Makbol. “Alzheimer’s Diseases Detection by Using Deep Learning Algorithms: A Mini-Review,” in IEEE Access, vol. 8, pp. 77131–77141, 2020, doi: 10.1109/ACCESS.2020.2989396.
R. Jain, A. Aggarwal, V. Kumar. “Chapter 1 – A review of deep learning-based disease detection in Alzheimer’s patients,” Editor(s): Hemanth D. Jude, Handbook of Decision Support Systems for Neurological Disorders, Academic Press, 2021, pp. 1–19. doi: 10.1016/B978-0-12-822271-3.00004-9.
M. Ghada, A. Fadhl, and G. H. Algaphari. “Machine learning and deep learning-based approaches on various biomarkers for Alzheimer’s disease early detection: A review,” IJSECS vol. 7, no. 2, pp. 26–43, 2021. doi: 10.15282/ijsecs.7.2.2021.4.0087.
A. Tousignant, P. Lemaître, D. Precup, D. L. Arnold, T. Arbel. “Prediction of Disease Progression in Multiple Sclerosis Patients using Deep Learning Analysis of MRI Data,” Proceedings of Machine Learning Research, 102, pp. 483-492, 2019.
M. Signaevsky, M. Prastawa, K. Farrell. “Artificial intelligence in neuropathology: deep learningbased assessment of tauopathy,” Lab Invest 99, 1019–1029 (2019). doi: 10.1038/s41374-019-0202-4.
A. W. Salehi, P. Baglat, B. B. Sharma, G. Gupta, and A. Upadhya. “A CNN Model: Earlier Diagnosis and Classification of Alzheimer Disease using MRI,” 2020 International Conference on Smart Electronics and Communication (ICOSEC), 2020, pp. 156–161, doi: 10.1109/ICOSEC49089.2020.9215402.
Lu B., et al. “A Practical Alzheimer Disease Classifier via Brain Imaging-Based Deep Learning on 85,721 Samples,” bioRxiv preprint doi: 10.1101/2020.08.18.256594; this version posted April 13, 2021.
M. Alshammari, and M. Mezher. “A Modified Convolutional Neural Networks For MRI-based Images for Detection and Stage Classification of Alzheimer Disease,” 2021 National Computing Colleges Conference (NCCC), 2021, pp. 1–7, doi: 10.1109/NCCC49330.2021.9428810.
H. Shamsul, et al. “A Deep Learning Model in the Detection of Alzheimer Disease,” Turkish Journal of Computer and Mathematics Education, vol. 12, no. 10, pp. 4013–4022, 2021. doi: 10.17762/turcomat. v12i10.5113.
D. Stamate, et al. “A metabolite-based machine learning approach to diagnose Alzheimertype dementia in blood,” Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, pp. 933–938, 2019. doi: 10.1016/j.trci.2019.11.001.
E. Shaker, A. Tamer, S. M. Riazul I, S. K. Kyung. “Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data”, Neurocomputing, vol. 412, pp. 197–215, 2020. doi: 10.1016/j.neucom. 2020.05.087.
G. Lee, K. Nho, B. Kang, et al. “Predicting Alzheimer’s disease progression using multimodal deep learning approach.” Sci Rep, 9, 1952 (2019). doi: 10.1038/s41598-018-37769-z.
F. J. Martinez-Murcia, A. Ortiz, J. -M. Gorriz, J. Ramirez, and D. Castillo-Barnes. “Studying the Manifold Structure of Alzheimer’s Disease: A Deep Learning Approach Using Convolutional Autoencoders,” in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 1, pp. 17–26, Jan. 2020, doi: 10.1109/JBHI.2019.2914970.
B. Lei, et al. “Predicting clinical scores for Alzheimer’s disease based on joint and deep learning,” Expert Systems with Applications, 187, 2022. doi: 10.1016/j.eswa.2021.115966.
S. Sarraf, A. Sarraf, D. D. DeSouza, J. Anderson, M. Kabia. “OViTAD: Optimized Vision Transformer to Predict Various Stages of Alzheimer’s Disease Using Resting-State fMRI and Structural MRI Data”. doi: 10.1101/2021.11.27.470184. doi: bioRxiv preprint.
Z. Zhang, F. Khalvati. “Introducing Vision Transformer for Alzheimer’s Disease classification task with 3D input”. 2022. arXiv preprint arXiv:2210.01177. doi: 10.48550/arXiv.2210. 01177.
F. Haghighi, T. Hosseinzadeh, M. R., Z. Zhou, M. B. Gotway, J. Liang. “Learning Semantics- Enriched Representation via Self-discovery, Selfclassi fication, and Self-restoration.” In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol. 12261. Springer, Cham. doi: 10.1007/978-3-030-59710-8_14.