Have a personal or library account? Click to login
Cuban Consumer Price Index Forecasting Through Transformer with Attention Cover

References

  1. A. Banerjee. “Forecasting price levels in india–an arima framework”, Academy of Marketing Studies Journal, vol. 25, no. 1, 2021, 1–15.
  2. J. Brownlee, Deep learning for time series forecasting: predict the future with MLPs, CNNs and LSTMs in Python, Machine Learning Mastery, 2018.
  3. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. “Empirical evaluation of gated recurrent neural networks on sequence modeling”. In: NIPS 2014 Workshop on Deep Learning, December 2014, 2014.
  4. S. Du, T. Li, Y. Yang, and S.-J. Horng. “Multivariate time series forecasting via attention-based encoder–decoder framework”, Neurocomputing, vol. 388, 2020, 269–279.
  5. J. M. García Molina, La economía cubana a inicios del siglo XXI: desafíos y oportunidades de la globalización, CEPAL, 2005.
  6. A. Ghazo et al. “Applying the arima model to the process of forecasting gdp and cpi in the jordanian economy”, International Journal of Financial Research, vol. 12, no. 3, 2021, 70.
  7. S. Jere, A. Banda, R. Chilyabanyama, E. Moyo, et al. “Modeling consumer price index in zambia: a comparative study between multicointegration and arima approach”, Open Journal of Statistics, vol. 9, no. 02, 2019, 245.
  8. L. M. León Anaya, V. M. Landassuri Moreno, H. R. Orozco Aguirre, and M. Quintana López. “Predicción del ipc mexicano combinando modelos econométricos e inteligencia artificial”, Revista mexicana de economía y finanzas, vol. 13, no. 4, 2018, 603–629.
  9. J. Li, Y. Vidyattama, H. A. La, R. Miranti, and D. M. Sologon. “Estimating the impact of covid- 19 and policy responses on australian income distribution using incomplete data”, Social Indicators Research, vol. 162, no. 1, 2022, 1–31.
  10. B. Lim, and S. Zohren. “Time-series forecasting with deep learning: a survey”, Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, 2021, 20200209.
  11. B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich. “A survey on long short-term memory networks for time series prediction”, Procedia CIRP, vol. 99, 2021, 650–655.
  12. I. Loshchilov, and F. Hutter. “Decoupled weight decay regularization”, arXiv preprint arXiv:1711.05101, 2017.
  13. D. P. Manik et al. “A strategy to create daily consumer price index by using big data in statistics indonesia”. In: 2015 International Conference on Information Technology Systems and Innovation (ICITSI), 2015, 1–5.
  14. T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. “Recurrent neural network based language model”. In: Eleventh annual conference of the international speech communication association, 2010.
  15. J. Mohamed. “Time series modeling and forecasting of somaliland consumer price index: a comparison of arima and regression with arima errors”, American Journal of Theoretical and Applied Statistics, vol. 9, no. 4, 2020, 143–53.
  16. T. Nyoni. “Modeling and forecasting inflation in kenya: Recent insights from arima and garch analysis”, Dimorian Review, vol. 5, no. 6, 2018, 16–40.
  17. T. Nyoni. “Arima modeling and forecasting of consumer price index (cpi) in germany”, 2019.
  18. ONEI. “Índice de precios al consumidor base diciembre 2010”, 2022.
  19. J. Riofrío, O. Chang, E. Revelo-Fuelagán, and D. H. Peluffo-Ordóñez. “Forecasting the consumer price index (cpi) of ecuador: A comparative study of predictive models”, International Journal on Advanced Science, Engineering and Information Technology, vol. 10, no. 3, 2020, 1078–1084.
  20. R. A. G. Rodríguez. “La visión estructuralista de la inflación. primeras aproximaciones para cuba.”, 2017.
  21. R. Rosado, A. J. Abreu, J. C. Arencibia, H. Gonzalez, and Y. Hernandez. “Consumer price index forecasting based on univariate time series and a deep neural network”. In: International Workshop on Artificial Intelligence and Pattern Recognition, 2021, 33–42.
  22. I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to sequence learning with neural networks”, Advances in neural information processing systems, vol. 27, 2014.
  23. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. “Attention is all you need”, Advances in neural information processing systems, vol. 30, 2017.
  24. W. Wibowo, T. Purwa, E. N. A. Bahri, B. S. S. Ulama, and R. N. Wilantari. “Impacts of earthquakes on consumer price index and inflation: A case study in west nusa tenggara province, indonesia”. In: Journal of Physics: Conference Series, vol. 1863, no. 1, 2021, 012062.
  25. R. J. Williams, and D. Zipser. “A learning algorithm for continually running fully recurrent neural networks”, Neural computation, vol. 1, no. 2, 1989, 270–280.
  26. S. Zahara, M. Ilmiddaviq, et al. “Consumer price index prediction using long short term memory (lstm) based cloud computing”. In: Journal of Physics: Conference Series, vol. 1456, no. 1, 2020, 012022.
  27. B. Zhang, G. Zou, D. Qin, Y. Lu, Y. Jin, and H. Wang. “A novel encoder-decoder model based on read- first lstm for air pollutant prediction”, Science of The Total Environment, vol. 765, 2021, 144507.
DOI: https://doi.org/10.14313/jamris/2-2023/11 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 12 - 17
Submitted on: Jan 10, 2023
Accepted on: Aug 1, 2023
Published on: Jan 26, 2024
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Reynaldo Rosado, Orlando G. Toledano-López, Hector R. González, Aldis J. Abreu, Yanio Hernandez, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.