References
- A. Banerjee. “Forecasting price levels in india–an arima framework”, Academy of Marketing Studies Journal, vol. 25, no. 1, 2021, 1–15.
- J. Brownlee, Deep learning for time series forecasting: predict the future with MLPs, CNNs and LSTMs in Python, Machine Learning Mastery, 2018.
- J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. “Empirical evaluation of gated recurrent neural networks on sequence modeling”. In: NIPS 2014 Workshop on Deep Learning, December 2014, 2014.
- S. Du, T. Li, Y. Yang, and S.-J. Horng. “Multivariate time series forecasting via attention-based encoder–decoder framework”, Neurocomputing, vol. 388, 2020, 269–279.
- J. M. García Molina, La economía cubana a inicios del siglo XXI: desafíos y oportunidades de la globalización, CEPAL, 2005.
- A. Ghazo et al. “Applying the arima model to the process of forecasting gdp and cpi in the jordanian economy”, International Journal of Financial Research, vol. 12, no. 3, 2021, 70.
- S. Jere, A. Banda, R. Chilyabanyama, E. Moyo, et al. “Modeling consumer price index in zambia: a comparative study between multicointegration and arima approach”, Open Journal of Statistics, vol. 9, no. 02, 2019, 245.
- L. M. León Anaya, V. M. Landassuri Moreno, H. R. Orozco Aguirre, and M. Quintana López. “Predicción del ipc mexicano combinando modelos econométricos e inteligencia artificial”, Revista mexicana de economía y finanzas, vol. 13, no. 4, 2018, 603–629.
- J. Li, Y. Vidyattama, H. A. La, R. Miranti, and D. M. Sologon. “Estimating the impact of covid- 19 and policy responses on australian income distribution using incomplete data”, Social Indicators Research, vol. 162, no. 1, 2022, 1–31.
- B. Lim, and S. Zohren. “Time-series forecasting with deep learning: a survey”, Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, 2021, 20200209.
- B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich. “A survey on long short-term memory networks for time series prediction”, Procedia CIRP, vol. 99, 2021, 650–655.
- I. Loshchilov, and F. Hutter. “Decoupled weight decay regularization”, arXiv preprint arXiv:1711.05101, 2017.
- D. P. Manik et al. “A strategy to create daily consumer price index by using big data in statistics indonesia”. In: 2015 International Conference on Information Technology Systems and Innovation (ICITSI), 2015, 1–5.
- T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. “Recurrent neural network based language model”. In: Eleventh annual conference of the international speech communication association, 2010.
- J. Mohamed. “Time series modeling and forecasting of somaliland consumer price index: a comparison of arima and regression with arima errors”, American Journal of Theoretical and Applied Statistics, vol. 9, no. 4, 2020, 143–53.
- T. Nyoni. “Modeling and forecasting inflation in kenya: Recent insights from arima and garch analysis”, Dimorian Review, vol. 5, no. 6, 2018, 16–40.
- T. Nyoni. “Arima modeling and forecasting of consumer price index (cpi) in germany”, 2019.
- ONEI. “Índice de precios al consumidor base diciembre 2010”, 2022.
- J. Riofrío, O. Chang, E. Revelo-Fuelagán, and D. H. Peluffo-Ordóñez. “Forecasting the consumer price index (cpi) of ecuador: A comparative study of predictive models”, International Journal on Advanced Science, Engineering and Information Technology, vol. 10, no. 3, 2020, 1078–1084.
- R. A. G. Rodríguez. “La visión estructuralista de la inflación. primeras aproximaciones para cuba.”, 2017.
- R. Rosado, A. J. Abreu, J. C. Arencibia, H. Gonzalez, and Y. Hernandez. “Consumer price index forecasting based on univariate time series and a deep neural network”. In: International Workshop on Artificial Intelligence and Pattern Recognition, 2021, 33–42.
- I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to sequence learning with neural networks”, Advances in neural information processing systems, vol. 27, 2014.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. “Attention is all you need”, Advances in neural information processing systems, vol. 30, 2017.
- W. Wibowo, T. Purwa, E. N. A. Bahri, B. S. S. Ulama, and R. N. Wilantari. “Impacts of earthquakes on consumer price index and inflation: A case study in west nusa tenggara province, indonesia”. In: Journal of Physics: Conference Series, vol. 1863, no. 1, 2021, 012062.
- R. J. Williams, and D. Zipser. “A learning algorithm for continually running fully recurrent neural networks”, Neural computation, vol. 1, no. 2, 1989, 270–280.
- S. Zahara, M. Ilmiddaviq, et al. “Consumer price index prediction using long short term memory (lstm) based cloud computing”. In: Journal of Physics: Conference Series, vol. 1456, no. 1, 2020, 012022.
- B. Zhang, G. Zou, D. Qin, Y. Lu, Y. Jin, and H. Wang. “A novel encoder-decoder model based on read- first lstm for air pollutant prediction”, Science of The Total Environment, vol. 765, 2021, 144507.
