Have a personal or library account? Click to login
A Cloud-Based Urban Monitoring System by Using a Quadcopter and Intelligent Learning Techniques Cover

A Cloud-Based Urban Monitoring System by Using a Quadcopter and Intelligent Learning Techniques

Open Access
|May 2023

References

  1. U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, A. Corradi, “Mobeyes: smart mobs for urban monitoring with a vehicular sensor network,” IEEE Wireless Communications, vol. 13, no. 5, 2006, pp. 52–57. DOI: 10.1109/WC-M.2006.250358
  2. P. J. Urban, G. Vall-Llosera, E. Medeiros, S. Dahlfort, “Fiber plant manager: An OTDR-and OTM-based PON monitoring system,” IEEE Communications Magazine, vol. 51, no. 2, 2013, pp. S9–S15. DOI: 10.1109/MCOM.2013.6461183
  3. A. del Amo, A. Martínez-Gracia, A. A. Bayod-Rújula, J. Antoñanzas, “An innovative urban energy system constituted by a photovoltaic/thermal hybrid solar installation: Design, simulation and monitoring,” Applied Energy, vol. 186, 2017, pp. 140–51. DOI: 10.1016/j.apenergy.2016.07.011
  4. I. Sa, P. Corke, “Vertical infrastructure inspection using a quadcopter and shared autonomy control,” Field and Service Robotics. Springer, 2014, pp. 219–32. DOI: 10.1007/978-3-642-40686-7_15
  5. X. Song, K. Mann, E. Allison, S.-C. Yoon, H. Hila, A. Muller, C. Gieder, “A quadcopter controlled by brain concentration and eye blink”, Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, 3-3 Dec. 2016, pp. 1–4. DOI: 10.1109/SPMB.2016.7846875
  6. D. E. Chang, Y. Eun, “Global Chartwise Feedback Linearization of the Quadcopter with a Thrust Positivity Preserving Dynamic Extension,” IEEE Transactions on Automatic Control, vol. 62, no. 9, 2017, pp. 4747–52.
  7. C. Yang, Q. Huang, Z. Li, K. Liu, F. Hu, “Big Data and cloud computing: innovation opportunities and challenges,” International Journal of Digital Earth, vol. 10, no. 1, 2017, pp. 13–53.
  8. M. Sookhak, A. Gani, M. K. Khan, R. Buyya, “Dynamic remote data auditing for securing big data storage in cloud computing,” Information Sciences, vol. 380, 2017, pp. 101–16. DOI: 10.1016/j.ins.2015.09.004
  9. Y. Zhang, M. Qiu, C. -W. Tsai, M. M. Hassan, A. Alamri, “Health-CPS: Healthcare cyber-physical system assisted by cloud and big data,” IEEE Systems Journal, vol. 11, no. 1, 2017, pp. 88–95. DOI: 10.1109/JSYST.2015.2460747
  10. J. L. Schnase, D. Q. Duffy, G. S. Tamkin, D. Nadeau, J. H. Thompson, C. M. Grieg, M. A. McInerney, W. P. Webster, “MERRA analytic services: meeting the big data challenges of climate science through cloud-enabled climate analytics-as-a-service,” Computers, Environment and Urban Systems, vol. 61, 2017, pp. 198–211. DOI: 10.1016/j.compenvurbsys.2013.12.003
  11. Nakamura J., Image sensors and signal processing for digital still cameras, CRC Press, Boca Raton, 2016.
  12. Y. LeCun, Y. Bengio, G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553, 2015, pp. 436–44. DOI: 10.1038/nature14539
  13. Goodfellow I., Bengio Y., Courville A., Deep Learning, MIT Press, 2016.
  14. W. Samek, A. Binder, G. Montavon, S. Lapuschkin, K. -R. Müller, “Evaluating the visualization of what a deep neural network has learned,” IEEE transactions on neural networks and learning systems, vol. PP, no. 99, 2016, pp. 1–14. DOI: 10.1109/TNNLS.2016.2599820
  15. F. J. Cabrerizo, F. Chiclana, R. Al-Hmouz, A. Morfeq, A. S. Balamash, E. Herrera-Viedma, “Fuzzy decision making and consensus: challenges,” Journal of Intelligent & Fuzzy Systems, vol. 29, no. 3, 2015, pp. 1109–1118. DOI: 10.3233/IFS-151719
  16. N. A. Korenevskiy, “Application of fuzzy logic for decision-making in medical expert systems,” Biomedical Engineering, vol. 49, no. 1, 2015, pp. 46–49. DOI: 10.1007/s10527-015-9494-x
  17. T. Runkler, S. Coupland, R. John, “Interval type-2 fuzzy decision making,” International Journal of Approximate Reasoning, vol. 80, 2017, pp. 217–224. DOI: 10.1016/j.ijar.2016.09.007
  18. Z. Hao, Z. Xu, H. Zhao, R. Zhang, “Novel intuitionistic fuzzy decision making models in the framework of decision field theory,” Information Fusion, vol. 33, 2017, pp. 57–70. DOI: 10.1016/j.inffus.2016.05.001
  19. Devroye L., Györfi L., Lugosi G., A probabilistic theory of pattern recognition, Springer Science & Business Media: Berlin, 2013, vol. 31.
  20. C. Bielza, P. Larrañaga, “Discrete Bayesian network classifiers: a survey,” ACM Computing Surveys (CSUR), vol. 47, no. 1, 2014, Article No. 5. DOI: 10.1145/2576868
  21. F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, C. Ratti, “Real-time urban monitoring using cell phones: A case study in Rome,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, 2011, pp. 141–151. DOI: 10.1109/TITS.2010.2074196
  22. K. Abraham, S. Pandian, “A low-cost mobile urban environmental monitoring system,” Proceedings of the 4th IEEE International Conference on Intelligent Systems Modelling & Simulation (ISMS), Bangkok, Thailand, 29-31 Jan. 2013, pp. 659–664. DOI: 10.1109/ISMS.2013.76
  23. J. Lee, Z. Zhong, B. Du, S. Gutesa, K. Kim, “Low-cost and energy-saving wireless sensor network for real-time urban mobility monitoring system,” Journal of Sensors, vol. 2015, 2015, pp. 1–8. DOI: 10.1155/2015/685786
  24. K. B. Shaban, A. Kadri, E. Rezk, “Urban air pollution monitoring system with forecasting models,” IEEE Sensors Journal, vol. 16, no. 8, 2016, pp. 2598–2606. DOI: 10.1109/JSEN.2016.2514378
  25. W. Zhao, T. H. Go, “Quadcopter formation flight control combining MPC and robust feedback linearization,” Journal of the Franklin Institute, vol. 351, no. 3, 2014, pp. 1335–1355. DOI: 10.1016/j.jfranklin.2013.10.021
  26. J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, 2015, pp. 85–117. DOI: 10.1016/j.neunet.2014.09.003
  27. M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, H. Larochelle, “Brain tumor segmentation with deep neural networks,” Medical Image Analysis, vol. 35, 2017, pp. 18–31. DOI: 10.1016/j.media.2016.05.004
  28. C.-C. Hsu, K. -S. Wang, H.-Y. Chung, S.-H. Chang, “A study of visual behavior of multidimensional scaling for kernel perceptron algorithm,” Neural Computing and Applications, vol. 26, no. 3, 2015, pp. 679–691. DOI: 10.1007/s00521-014-1746-2
  29. Ross T. J., Fuzzy logic with engineering applications, John Wiley & Sons, 2009.
  30. M. Cococcioni, L. Foschini, B. Lazzerini, F. Marcelloni, “Complexity reduction of Mamdani Fuzzy Systems through multi-valued logic minimization,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Singapore, 12–15 Oct. 2008, pp. 1782–1787. DOI: 10.1109/ICSMC.2008.4811547
  31. M. S. Gharajeh, S. Khanmohammadi, “Dispatching Rescue and Support Teams to Events Using Ad Hoc Networks and Fuzzy Decision Making in Rescue Applications,” Journal of Control and Systems Engineering, vol. 3, no. 1, 2015, pp. 35–50. DOI:10.18005/JCSE0301003
  32. M. S. Gharajeh, S. Khanmohammadi, “DFRTP: Dynamic 3D Fuzzy Routing Based on Traffic Probability in Wireless Sensor Networks,” IET Wireless Sensor Systems, vol. 6, no. 6, 2016, pp. 211–219. DOI: 10.1049/iet-wss.2015.0008
  33. S. Khanmohammadi, M. S. Gharajeh, “A Routing Protocol for Data Transferring in Wireless Sensor Networks Using Predictive Fuzzy Inference System and Neural Node,” Ad Hoc & Sensor Wireless Networks, vol. 38, no. 1–4, 2017, pp. 103–124.
  34. M. S. Gharajeh, “FSB-System: A Detection System for Fire, Suffocation, and Burn Based on Fuzzy Decision Making, MCDM, and RGB Model in Wireless Sensor Networks,” Wireless Personal Communications, vol. 105, no. 4, 2019, pp. 1171–1213. DOI: 10.1007/s11277-019-06141-3
  35. M. S. Gharajeh, “Implementation of an Autonomous Intelligent Mobile Robot for Climate Purposes,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 31, no. 3, 2019, pp. 200–218. DOI: 10.1504/IJAHUC.2019.10022345
  36. M. S. Gharajeh, “A Knowledge and Intelligence-based Strategy for Resource Discovery on IaaS Cloud Systems,” International Journal of Grid and Utility Computing, vol. 12, no. 2, 2021, pp. 205–221. DOI: 10.1504/IJGUC.2021.114819
  37. M. S. Gharajeh, H. B. Jond, “Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning,” Sensors, vol. 21, no. 10, 2021, Article ID 3433. DOI: 10.3390/s21103433
  38. B. C. Ko, K.-H. Cheong, J.-Y. Nam, “Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks,” Fire Safety Journal, vol. 45, no. 4, 2010, pp. 262–270. DOI: 10.1016/j.firesaf.2010.04.001
  39. B. U. Töreyin, Y. Dedeoğlu, U. Güdükbay, A. E. Cetin, “Computer vision based method for real-time fire and flame detection,” Pattern Recognition Letters, vol. 27, no. 1, 2006, pp. 49–58. DOI: 10.1016/j.patrec.2005.06.015
  40. B. C. Ko, K.-H. Cheong, J.-Y. Nam, “Fire detection based on vision sensor and support vector machines,” Fire Safety Journal, vol. 44, no. 3, 2009, pp. 322–329. DOI: 10.1016/j.firesaf.2008.07.006
DOI: https://doi.org/10.14313/jamris/2-2022/11 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 11 - 19
Submitted on: Dec 21, 2021
Accepted on: Feb 24, 2022
Published on: May 29, 2023
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Sohrab Khanmohammadi, Mohammad Samadi, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.