Have a personal or library account? Click to login
The Coal Quality CICS That Increases the Wear Resistance of Heat Exchanger Tubes Cover

The Coal Quality CICS That Increases the Wear Resistance of Heat Exchanger Tubes

Open Access
|Apr 2024

References

  1. IEA, “World gross electricity production by source,” 2019; https://www.iea.org/data-andstatistics/charts/world-gross-electricityproduction-by-source-2019.
  2. IEA, “Energy Statistics Data Browser,” 2022; https://www.iea.org/data-and-statistics/datatools/energy-statistics-data-browser.
  3. M.R. Kadagala, S. Nikkam, and S.K. Tripathy, “A Review On Flotation Of Coal Using Mixed Reagent Systems,” Minerals Engineering, vol. 173, 2021, 107217, ISSN 0892-6875, doi: 10.1016/j.mineng.2021.107217.
  4. M. Polat, H. Polat, and S. Chander, “Physical And Chemical Interactions In Coal Flotation,” International Journal of Mineral Processing, vol. 72, no. 1–4, 2003, pp. 199-213, doi: 10.1016/S0301-7516(03)00099-1.
  5. J. Ferrer-Comalat, S. Linares-Mustarós, J.M. Merigo, and J. Kacprzyk, “Modelling and Simulation in Management Sciences,” Proceedings of the International Conference on Modelling and Simulation in Management Sciences (MS-18): Proceedings of the International Conference on Modelling and Simulation in Management Sciences (MS-18), 2020, doi: 10.1007/978-3-030-15413-4.
  6. S.N. Pelykh and M.V. Maksimov, “The Method Of Fuel Rearrangement Control Considering Fuel Element Cladding Damage And Burnup”, Problems of Atomic Science and Technology, vol. 87, no. 5, 2013, pp. 84–90, https://vant.kipt.kharkov.ua/TABFRAME.html.
  7. M.V. Maksimov, S.N. Pelykh, and R.L. Gontar, “Principles Of Controlling Fuel-Element Cladding Lifetime In Variable VVER-1000 Loading Regimes”, Atomic Energy, vol. 112, no. 4, 2012, pp. 241–249, doi: 10.1007/s10512-012-9552-3.
  8. W. Wang, J. Liu, Z. Gan, Y. Niu, and D. Zeng, “Flexible Control Of Combined Heat And Power Units Based On Heat-Power Estimation And Coordination”, International Journal of Electrical Power & Energy Systems, vol. 123, 2020, 106261, ISSN 0142-0615, doi: 10.1016/j.ijepes.2020.106261.
  9. W. Tan, J. Liu, F. Fang, Y. Chen, “Tuning of PID Controllers For Boiler-Turbine Units”, ISA Transactions, vol. 43, no. 4, 2004, pp. 571–583, ISSN 0019-0578, doi: 10.1016/S0019-0578(07)60169-4.
  10. M.V. Grishyn and K.V. Beglov, “Evaluating The Effectiveness Of Fuel Enrichment To Reduce The Risk Of Power Plant Costs,” Včenì zapiski Tavrìjs’kogo nacìonal’nogo unìversitetu ìmenì V. Ì. Vernads’kogo. Serìâ Tehnìčnì nauki, vol. 32, no. 3, 2021, pp. 82–89, doi: 10.32838/2663-5941/2021.3/14.
  11. Z. Dong, R. Wang, M. Fan, and X. Fu, “Switching And Optimizing Control For Coal Flotation Process Based On A Hybrid Model,” PLoS ONE, vol. 12, no. 10, 2017, e0186553, doi: 10.1371/journal.pone.0186553.
  12. Q. Tian, H. Wang, and Y. Pan, “Associations of Gangue Minerals in Coal Flotation Tailing and Their Transportation Behaviors in the Flotation Process,” ACS Omega, vol. 7, no. 31, 2022, pp. 27542–27549, doi: 10.1021/acsomega.2c02988.
  13. A.I. Brunetkin and M.V. Maksimov, “The Method For Determination Of A Combustible Gase Composition During Its Combustion,” Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, vol. 5, 2015, pp. 83–90, http://nvngu.in.ua/index.php/uk/arkhivzhurnalu/za-vipuskami/1132-2015/zmist-5-2015/tekhnologiji-energozabezpechennya/3162-metod-viznachennya-skladu-goryuchikhgaziv-pri-jikh-spalyuvanni.
  14. Y.V. Shcheglov, N.V. Fedorova, and D.A. Shaforost, “The Abrasive Properties of Coal Power Plants Ash and Slag Materials,” Solid State Phenomena, vol. 299, 2020, pp. 845–851, doi: 10.4028/www.scientific.net/SSP.299.845.
  15. I. Kocaarslan, E. Çam, and H. Tiryaki, “A Fuzzy Logic Controller Application For Thermal Power Plants”, Energy Conversion and Management, vol. 47, 2006, pp. 442-458. doi: 10.1016/j.enconman.2005.05.010.
  16. A.Z. Cipriano, “Fuzzy Predictive Control for Power Plants”, Advanced Fuzzy Logic Technologies in Industrial Applications, Advances in Industrial Control, 2006, pp. 279–297, doi: 10.1007/978-1-84628-469-4_19.
  17. Y.P. Kondratenko and A.V. Kozlov, “Generation of Rule Bases of Fuzzy Systems Based on Modified Ant Colony Algorithms,” Journal of Automation and Information Sciences, vol. 51, no. 3, 2019, pp. 4–25, doi: 10.1615/JAutomatInfScien. v51.i3.20.
  18. O. Kozlov, Y. Kondratenko, H. Lysiuk, V. Kryvda, and O. Maksymova, “Fuzzy Automatic Control of the Pyrolysis Process for the Municipal Solid Waste of Variable Composition,” Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 16, no. 1, 2022, pp. 83–94, doi: 10.14313/JAMRIS/1-2022/9.
  19. S. Satyanarayana, R.K. Sharma, Mukta and A.K. Sappa, ”Automatic Generation Control In Power Plant Using PID, PSS And Fuzzy-PID Controller,” 2014 International Conference on Smart Electric Grid (ISEG), Guntur, India, 2014, pp. 1–8, doi: 10.1109/ISEG.2014.7005618.
  20. O. Kozlov, G. Kondratenko, Z. Gomolka, and Y. Kondratenko, “Synthesis and Optimization of Green Fuzzy Controllers for the Reactors of the Specialized Pyrolysis Plants,” Green IT Engineering: Social, Business and Industrial Applications, Studies in Systems, Decision and Control, V. Kharchenko, Y. Kondratenko, and J. Kacprzyk, eds., Springer, Cham, 2019, pp. 373–396, doi: 10.1007/978-3-030-00253-4_16.
  21. Y.P. Kondratenko and A.V. Kozlov, “Parametric Optimization Of Fuzzy Control Systems Based On Hybrid Particle Swarm Algorithms With Elite Strategy,” Journal of Automation and Information Sciences, vol. 51, no. 12, 2019, pp. 25–45.
  22. Q. Bu et al. “The Effect Of Fuzzy PID Temperature Control On Thermal Behavior Analysis And Kinetics Study Of Biomass Microwave Pyrolysis”, Journal of Analytical and Applied Pyrolysis, vol. 158, 2021, 105176, doi: 10.1016/j.jaap.2021.105176
  23. X. Liu, S. Wang, and L. Xing, ”Fuzzy Self-Tuning PID Temperature Control For Biomass Pyrolysis Fluidized Bed Combustor,” 2010 2nd IEEE International Conference on Information Management and Engineering, 2010, pp. 384–387, doi: 10.1109/ICIME.2010.5477837.
  24. M. Ovcharenko, “DTEK investuie 117 mln hrn na ekolohichnu modernizatsiiu Prydniprovs’koii TES,” uprom.info; https://uprom.info/news/energy/dtek-investuye-117-mln-grn-na-ekologichnu-modernizatsiyu-pridniprovskoyi-tes/ (in Ukranian).
  25. G.L. Fisher, D.P.Y. Chang, and M. Brummer, “Fly Ash Collected from Electrostatic Precipitators: Microcrystal- lines Structures and the Mystery of the Spheres,” Science, vol. 192, no. 4239, 1976, pp. 553–555, doi: 10.1126/science.192.4239.553.
  26. Guarantees Of Citizens’ Environmental Rights, Document 1264-XI, Article 10, Law Of Ukraine On Environmental Protection; https://zakon.rada.gov.ua/laws/main/1264-12?lang=en#Text.
  27. V.G. Vasilenko, “Methodical Recommendations for Evaluation of Greenhouse Gas Emissions by Type of Activity of Facilities, Annex to the Order of the Ministry of Environmental Protection and Natural Resources of Ukraine on Approval of Methodical Recommendations for Evaluation of Greenhouse Gas Emissions by Type of Activity of Facilities №404,” 2021, https://mepr.gov.ua/files/docs/nakazy/2021/404%D0%BD%D0%B41.pdf (in Ukranian).
  28. D.V. Chugunkov, G.A. Seyfelmliukova, V.P. Kuzema, and A.E. Bogdanova, “Research on structure of ash-slag pulp and its influence on pipelines’ attrition of a thermal power plants’ hydraulic ash removal system,” Journal of Physics: Conference Series, vol. 1370, no. 1, 2019, doi: 10.1088/1742-6596/1370/1/012015.
  29. L.A. Kumar, A. Kalaiarasi, and Y.U. Maheswari, Power Electronics with MATLAB, Cambridge University Press, 2017.
  30. L. Wang, S. Chai, D. Yoo, L. Gan, and K. Ng, “PID and Predictive Control of Electrical Drives and Power Converters using MATLAB/Simulink,” IEEE Press, 2015.
  31. L. Wang, “PID Control System Design and Automatic Tuning using MATLAB/Simulink: Design and Implementation using MATLAB/Simulink,” IEEE Press, 2020.
  32. M. Jamshidi, V. Kreinovich, and J. Kacprzyk, Advance Trends In Soft Computing, Springer, 2013. doi: 10.1007/978-3-319-03674-8.
  33. J. Kacprzyk, Multistage Fuzzy Control: A Prescriptive Approach, John Wiley & Sons Inc., 1997.
  34. E. Szmidt and J. Kacprzyk, ”Distances between intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 114, no. 3, 2000, pp. 505–518, doi: 10.1016/S0165-0114(98)00244-9.
  35. E. Szmidt and J. Kacprzyk. “A Consensus- Reaching Process Under Intuitionistic Fuzzy Preference Relations”, International Journal of Intelligent System, vol. 18, 2003, pp. 837–852, doi: 10.1002/int.10119.
  36. W. Pedrycz, K. Li, and M. Reformat, “Evolutionary Reduction Of Fuzzy Rule-Based Models,” Fifty Years of Fuzzy Logic and its Applications, Springer, 2015, pp. 459–481, doi: 10.1007/978-3-319-19683-1_23.
  37. J. Jantzen, Foundations of Fuzzy Control: A Practical Approach, 2nd ed., John Wiley & Sons Inc, 2013, doi: 10.1002/9781118535608.
  38. S.N. Sivanandam, S. Sumathi, and S. N. Deepa, Introduction to Fuzzy Logic using MATLAB, Springer International Publishing, 2007, doi: 10.1007/978-3-540-35781-0.
DOI: https://doi.org/10.14313/jamris/1-2024/2 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 12 - 24
Submitted on: Oct 14, 2022
|
Accepted on: Sep 29, 2023
|
Published on: Apr 13, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Maksym Grishyn, Kostiantyn Beglov, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.