Have a personal or library account? Click to login
Finding the Sweet Spot: A Study of Data Augmentation Intensity for Small-Scale Image Classification Cover

Finding the Sweet Spot: A Study of Data Augmentation Intensity for Small-Scale Image Classification

By: Windra Swastika  
Open Access
|Dec 2025

References

  1. R. Caruana, S. Lawrence, and C.L. Giles, “Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping”, Advances in Neural Information Processing Systems, vol. 13, pp. 402–408.
  2. C. Shorten and T.M. Khoshgoftaar, “A Survey on Image Data Augmentation for Deep Learning”, Journal of Big Data, vol. 6, no. 1, pp. 1–48 doi: 10.1186/s40537-019-0197-0
  3. J. Wang and L. Perez, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning”, arXiv preprint arXiv:1712.04621, 2017.
  4. A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, University of Toronto, 2009.
  5. S.G. Müller and F. Hutter, “TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation”, Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 774–782.
  6. E.D. Cubuk “AutoAugment: Learning Augmentation Strategies from Data”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123.
  7. Bischl Hyperparameter Optimization: Foundations, Algorithms, Best Practices, and Open Challenges Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 132, e1484 https://doi.org/10.1002/widm.1484
  8. A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, Communications of the ACM, vol. 60, no. 6, pp. 84–90.
  9. P.Y. Simard, D. Steinkraus, and J.C. Platt, “Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis”, Proceedings of the Seventh International Conference on Document Analysis and Recognition, vol. 2, pp. 958–963.
  10. K. Chatfield “Return of the Devil in the Details: Delving Deep into Convolutional Nets”, British Machine Vision Conference, 2014.
  11. S.G. Müller, L. Hollmann, and F. Hutter, “Hyperparameter Optimization: Foundations, Algorithms, Best Practices, and Open Challenges”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 13, no. 2, e1484, 2023.
  12. L. Taylor and G. Nitschke, “Improving Deep Learning with Generic Data Augmentation”, IEEE Symposium Series on Computational Intelligence, pp. 1–8.
  13. D. Hendrycks “AugMax: Adversarial Composition of Random Augmentations for Robust Training”, Advances in Neural Information Processing Systems, vol. 34, pp. 237–249.
  14. H. Zhang, “Mixup: Beyond Empirical Risk Minimization”, International Conference on Learning Representations, 2018.
  15. S. Yun, “CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features”, Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032.
  16. F. Zhao, J. Huang, and J. Gao, “Data Augmentation for Deep Learning-Based Radio Modulation Classification”, IEEE Access, vol. 7, pp. 15713–15722.
  17. J. Lemley, S. Bazrafkan, and P. Corcoran, “Smart Augmentation Learning an Optimal Data Augmentation Strategy”, IEEE Access, vol. 5, pp. 5858–5869 doi: 10.1109/ACCESS. 2017.2696121
DOI: https://doi.org/10.14313/jamris-2025-038 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 94 - 101
Submitted on: Jun 28, 2025
|
Accepted on: Aug 22, 2025
|
Published on: Dec 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Windra Swastika, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.