Have a personal or library account? Click to login
Challenges in Predicting Smart Grid Stability Linked with Renewable Energy Resources Through Spark MLlib Learning Cover

Challenges in Predicting Smart Grid Stability Linked with Renewable Energy Resources Through Spark MLlib Learning

Open Access
|Dec 2025

Authors

Amal Zouhri

amal.zouhri@usmba.ac.ma

Sidi Mohammed Ben Abdellah University, Faculty of Sciences Dhar el mahraz, Laboratory of Electronics, Signals, Systems and Computer Science, Fez, Morocco

Ismail Boumhidi

ismail.boumhidi@usmba.ac.ma

Sidi Mohammed Ben Abdellah University, Faculty of Sciences Dhar el mahraz, Laboratory of Electronics, Signals, Systems and Computer Science, Fez, Morocco

Ismail Boumhidi

ismail.boumhidi@usmba.ac.ma

Sidi Mohammed Ben Abdellah University, Faculty of Sciences Dhar el mahraz, Laboratory of Electronics, Signals, Systems and Computer Science, Fez, Morocco

Abderahamane Ez-Zahout

a.ezzahout@um5r.ac.ma

Mohammed V University Adjunct Professor at SSE School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco

Said Chakouk

s.chakouk@um5r.ac.ma

Faculty of Letters and Human Sciences, Mohammed V University in Rabat, Rabat, Morocco

Mostafa El Mallahi

mostafa.elmallahi@usmba.ac.ma

Sidi Mohammed ben Abdellah University, Ecole Normale SupĒrieure, Fez, Morocco
DOI: https://doi.org/10.14313/jamris-2025-036 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 70 - 81
Submitted on: Apr 28, 2023
|
Accepted on: Sep 4, 2024
|
Published on: Dec 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Amal Zouhri, Ismail Boumhidi, Ismail Boumhidi, Abderahamane Ez-Zahout, Said Chakouk, Mostafa El Mallahi, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.