Have a personal or library account? Click to login

Development of a Distributed Outlier Detection Method Based on the Alternating Direction Method of Multipliers

Open Access
|Jun 2025

References

  1. A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection”, Journal of Signal Processing Systems, vol. 79, no. 2, 2015, pp. 179–188, doi:10.1007/s11265-014-0913-0.
  2. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls”, ACM Transactions on Mathematical Software (TOMS), vol. 22, no. 4, 1996, pp. 469–483, doi:10.1145/235815.235821.
  3. A. Boukerche, L. Zheng, and O. Alfandi, “Outlier detection”, ACM Computing Surveys, vol. 53, no. 3, 2021, pp. 1–37, doi:10.1145/3381028.
  4. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers”, vol. 3, no. 1, 2010, pp. 1–122, doi:10.1561/2200000016.
  5. S. P. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
  6. P. Casale, O. Pujol, and P. Radeva, “Approximate convex hulls family for one-class classification”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6713 LNCS, 2011, pp. 106–115, doi:10.1007/978-3- 642-21557-5_13.
  7. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection”, ACM Computing Surveys, vol. 41, no. 3, 2009, pp. 1–58, doi:10.1145/1541880.1541882.
  8. W.-C. Chang, C.-P. Lee, ·. Chih, and J. Lin. “A revisit to support vector data description”. Technical report, Department of Computer Science at National Taiwan University, Taipei, Taiwan, 2013.
  9. R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A comparative evaluation of outlier detection algorithms: Experiments and analyses”, Pattern Recognition, vol. 74, 2018, pp. 406– 421, doi:10.1016/J.PATCOG.2017.09.037.
  10. J. Eckstein and W. Yao. “Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives”. Technical report, 2015.
  11. M. Fukushima, “Application of the alternating direction method of multipliers to separable convex programming problems”, Computational Optimization and Applications, vol. 1, no. 1, 1992, pp. 93–111, doi:10.1007/BF00247655.
  12. W. Hilal, S. A. Gadsden, and J. Yawney, “Financial fraud”, Expert Systems with Applications, vol. 193, 2022, doi:10.1016/J.ESWA.2021.116429.
  13. J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf, “Correcting sample selection bias by unlabeled data”, NIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems, 2006, pp. 601– 608, doi:10.7551/mitpress/7503.003.0080.
  14. I. Kalliantzis, A. N. Papadopoulos, A. Gounaris, and K. Tsichlas. “Efficient distributed outlier detection in data streams”. Technical report, 2019.
  15. T. Kanamori, S. Hido, and M. Sugiyama, “Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection”, Advances in Neural Information Processing Systems 21-Proceedings of the 2008 Conference, 2009, pp. 809–816.
  16. J. D. Kelleher, B. Mac Namee, and D’Arcy Aoife, Fundamentals of machine learning for predictive data analytics, MIT Press, 2020.
  17. C.-N. Li, Y.-H. Shao, W. Yin, and M.-Z. Liu, “Robust and sparse linear discriminant analysis via an alternating direction method of multipliers”, IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 3, 2020, pp. 915– 926, doi:10.1109/TNNLS.2019.2910991.
  18. M. M. Moya and D. R. Hush, “Network constraints and multi-objective optimization for one-class classification”, Neural Networks, vol. 9, no. 3, 1996, pp. 463–474, doi:10.1016/0893- 6080(95)00120-4.
  19. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: machine learning in Python”, Journal of Machine Learning Research, vol. 12, no. 85, 2011, pp. 2825–2830.
  20. N. R. Prasad, S. Almanza-Garcia, and T. T. Lu, “Anomaly detection”, Computers, Materials and Continua, vol. 14, no. 1, 2009, pp. 1–22, doi:10.3970/cmc.2009.014.001.
  21. N. N. R. Ranga Suri, N. Murty M, and G. Athithan, Outlier detection: Techniques and applications, Intelligent Systems Reference Library, Springer International Publishing, 2019, doi:10.1007/978-3-030-05127-3.
  22. G. Ranganathan, “Real time anomaly detection techniques using PySpark frame Work”, Journal of Artificial Intelligence and Capsule Networks, vol. 2, no. 1, 2020, pp. 20–30, doi:10.36548/jaicn.2020.1.003.
  23. B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support of a high-dimensional distribution”, Neural Computation, vol. 13, no. 7, 2001, pp. 1443–1471, doi:10.1162/089976601750264965.
  24. B. Schölkopf, R. C. Williamson, A. Smola, and J. Shawe-Taylor, “SV estimation ofa distribution’s support”. In: Neural Information Processing Systems (NIPS), 2000, pp. 582–588.
  25. D. M. Tax and R. P. Duin, “Support vector data description”, Machine Learning, vol. 54, no. 1, 2004, pp. 45–66, doi:10.1023/B:MACH.0000008084.60811.49.
  26. T. Wang, M. Cai, X. Ouyang, Z. Cao, T. Cai, X. Tan, and X. Lu, “Anomaly detection based on convex analysis: A survey”, Frontiers in Physics, vol. 10, 2022, pp. 873–848, doi:10.3389/FPHY.2022.873848/BIBTEX.
  27. K. Zhang, I. W. Tsang, and J. T. Kwok, “Improved Nyström low-rank approximation and error analysis”. In: Proceedings of the 25th international conference on Machine learning-ICML ‘08, New York, New York, USA, 2008, pp. 1232–1239, doi:10.1145/1390156.1390311.
  28. S. Zhang, V. Ursekar, and L. Akoglu, “Sparx: Distributed outlier detection at scale”. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2022, pp. 4530–4540, doi:10.1145/3534678.3539076.
  29. Y. Zhao, PyOD documentacion release 1.0.9, USC, 2023.
  30. Y. Zhao, Z. Nasrullah, and Z. Li. “PyOD: A Python toolbox for scalable outlier detection”. Technical report, 2019.
DOI: https://doi.org/10.14313/jamris-2025-009 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 1 - 7
Submitted on: Feb 29, 2024
Accepted on: Mar 27, 2025
Published on: Jun 26, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Alejandro Cespón Ferriol, Héctor R González Diez, Carlos A. Morell Pérez, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.