References
- A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection”, Journal of Signal Processing Systems, vol. 79, no. 2, 2015, pp. 179–188, doi:10.1007/s11265-014-0913-0.
- C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls”, ACM Transactions on Mathematical Software (TOMS), vol. 22, no. 4, 1996, pp. 469–483, doi:10.1145/235815.235821.
- A. Boukerche, L. Zheng, and O. Alfandi, “Outlier detection”, ACM Computing Surveys, vol. 53, no. 3, 2021, pp. 1–37, doi:10.1145/3381028.
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers”, vol. 3, no. 1, 2010, pp. 1–122, doi:10.1561/2200000016.
- S. P. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
- P. Casale, O. Pujol, and P. Radeva, “Approximate convex hulls family for one-class classification”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6713 LNCS, 2011, pp. 106–115, doi:10.1007/978-3- 642-21557-5_13.
- V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection”, ACM Computing Surveys, vol. 41, no. 3, 2009, pp. 1–58, doi:10.1145/1541880.1541882.
- W.-C. Chang, C.-P. Lee, ·. Chih, and J. Lin. “A revisit to support vector data description”. Technical report, Department of Computer Science at National Taiwan University, Taipei, Taiwan, 2013.
- R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A comparative evaluation of outlier detection algorithms: Experiments and analyses”, Pattern Recognition, vol. 74, 2018, pp. 406– 421, doi:10.1016/J.PATCOG.2017.09.037.
- J. Eckstein and W. Yao. “Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives”. Technical report, 2015.
- M. Fukushima, “Application of the alternating direction method of multipliers to separable convex programming problems”, Computational Optimization and Applications, vol. 1, no. 1, 1992, pp. 93–111, doi:10.1007/BF00247655.
- W. Hilal, S. A. Gadsden, and J. Yawney, “Financial fraud”, Expert Systems with Applications, vol. 193, 2022, doi:10.1016/J.ESWA.2021.116429.
- J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf, “Correcting sample selection bias by unlabeled data”, NIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems, 2006, pp. 601– 608, doi:10.7551/mitpress/7503.003.0080.
- I. Kalliantzis, A. N. Papadopoulos, A. Gounaris, and K. Tsichlas. “Efficient distributed outlier detection in data streams”. Technical report, 2019.
- T. Kanamori, S. Hido, and M. Sugiyama, “Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection”, Advances in Neural Information Processing Systems 21-Proceedings of the 2008 Conference, 2009, pp. 809–816.
- J. D. Kelleher, B. Mac Namee, and D’Arcy Aoife, Fundamentals of machine learning for predictive data analytics, MIT Press, 2020.
- C.-N. Li, Y.-H. Shao, W. Yin, and M.-Z. Liu, “Robust and sparse linear discriminant analysis via an alternating direction method of multipliers”, IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 3, 2020, pp. 915– 926, doi:10.1109/TNNLS.2019.2910991.
- M. M. Moya and D. R. Hush, “Network constraints and multi-objective optimization for one-class classification”, Neural Networks, vol. 9, no. 3, 1996, pp. 463–474, doi:10.1016/0893- 6080(95)00120-4.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: machine learning in Python”, Journal of Machine Learning Research, vol. 12, no. 85, 2011, pp. 2825–2830.
- N. R. Prasad, S. Almanza-Garcia, and T. T. Lu, “Anomaly detection”, Computers, Materials and Continua, vol. 14, no. 1, 2009, pp. 1–22, doi:10.3970/cmc.2009.014.001.
- N. N. R. Ranga Suri, N. Murty M, and G. Athithan, Outlier detection: Techniques and applications, Intelligent Systems Reference Library, Springer International Publishing, 2019, doi:10.1007/978-3-030-05127-3.
- G. Ranganathan, “Real time anomaly detection techniques using PySpark frame Work”, Journal of Artificial Intelligence and Capsule Networks, vol. 2, no. 1, 2020, pp. 20–30, doi:10.36548/jaicn.2020.1.003.
- B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support of a high-dimensional distribution”, Neural Computation, vol. 13, no. 7, 2001, pp. 1443–1471, doi:10.1162/089976601750264965.
- B. Schölkopf, R. C. Williamson, A. Smola, and J. Shawe-Taylor, “SV estimation ofa distribution’s support”. In: Neural Information Processing Systems (NIPS), 2000, pp. 582–588.
- D. M. Tax and R. P. Duin, “Support vector data description”, Machine Learning, vol. 54, no. 1, 2004, pp. 45–66, doi:10.1023/B:MACH.0000008084.60811.49.
- T. Wang, M. Cai, X. Ouyang, Z. Cao, T. Cai, X. Tan, and X. Lu, “Anomaly detection based on convex analysis: A survey”, Frontiers in Physics, vol. 10, 2022, pp. 873–848, doi:10.3389/FPHY.2022.873848/BIBTEX.
- K. Zhang, I. W. Tsang, and J. T. Kwok, “Improved Nyström low-rank approximation and error analysis”. In: Proceedings of the 25th international conference on Machine learning-ICML ‘08, New York, New York, USA, 2008, pp. 1232–1239, doi:10.1145/1390156.1390311.
- S. Zhang, V. Ursekar, and L. Akoglu, “Sparx: Distributed outlier detection at scale”. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2022, pp. 4530–4540, doi:10.1145/3534678.3539076.
- Y. Zhao, PyOD documentacion release 1.0.9, USC, 2023.
- Y. Zhao, Z. Nasrullah, and Z. Li. “PyOD: A Python toolbox for scalable outlier detection”. Technical report, 2019.
