Have a personal or library account? Click to login
Open Access
|Mar 2025

References

  1. AT&T Laboratories Cambridge. “The database of faces”, 2023. https://cam-orl.co.uk/facedatabase.html.
  2. P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fisherfaces: recognition using class specific linear projection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, 1997, 711–720, 10.1109/34.598228.
  3. A. Eleyan and H. Demirel, “Pca and lda based face recognition using feedforward neural network classifier”. In: B. Gunsel, A. K. Jain, A. M. Tekalp, and B. Sankur, eds., Multimedia Content Representation, Classification and Security, Berlin, Heidelberg, 2006, 199–206.
  4. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–778, 10.1109/CVPR.2016.90.
  5. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, Commun. ACM, vol. 60, no. 6, 2017, 84–90, 10.1145/3065386.
  6. L. Li, X. Mu, S. Li, and H. Peng, “A review of face recognition technology”, IEEE Access, vol. 8, 2020, 139110–139120, 10.1109/ACCESS.2020.3011028.
  7. X. Li, Y. Xiang, and S. Li, “Combining convolutional and vision transformer structures for sheep face recognition”, Computers and Electronics in Agriculture, vol. 205, 2023, 107651, https://doi.org/10.1016/j.compag.2023.107651.
  8. O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”. In: X. Xie, M. W. Jones, and G. K. L. Tam, eds., Proceedings of the British Machine Vision Conference (BMVC), 2015, 41.1–41.12, 10.5244/C.29.41.
  9. B. S. Peng Lu and L. Xu, “Human face recognition based on convolutional neural network and augmented dataset”, Systems Science & Control Engineering, vol. 9, no. sup2, 2021, 29–37, 10.1 080/21642583.2020.1836526.
  10. F. Samaria and A. Harter, “Parameterisation of a stochastic model for human face identification”, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, 1994, 138–142, 10.110 9/ACV.1994.341300.
  11. F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition and clustering”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 815–823, 10.1109/CVPR.2015.7298682.
  12. Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint identification-verification”. In: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds., Advances in Neural Information Processing Systems, vol. 27, 2014.
  13. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to humanlevel performance in face verification”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, 1701–1708, 10.1109/CVPR.2014.220.
  14. M. Turk and A. Pentland, “Face recognition using eigenfaces”. In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991, 586–591, 10.1109/CVPR.1991.139758.
  15. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features”, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, 2001, I–I, 10.1109/CVPR.2001.990517.
  16. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks”, IEEE Signal Processing Letters, vol. 23, no. 10, 2016, 1499–1503, 10.1109/LSP.2016.2603342.
DOI: https://doi.org/10.14313/jamris-2025-007 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 65 - 72
Submitted on: Sep 4, 2024
Accepted on: Oct 5, 2024
Published on: Mar 31, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Wojciech Domski, Adam Jankowiak, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.