References
- AT&T Laboratories Cambridge. “The database of faces”, 2023. https://cam-orl.co.uk/facedatabase.html.
- P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fisherfaces: recognition using class specific linear projection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, 1997, 711–720, 10.1109/34.598228.
- A. Eleyan and H. Demirel, “Pca and lda based face recognition using feedforward neural network classifier”. In: B. Gunsel, A. K. Jain, A. M. Tekalp, and B. Sankur, eds., Multimedia Content Representation, Classification and Security, Berlin, Heidelberg, 2006, 199–206.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–778, 10.1109/CVPR.2016.90.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, Commun. ACM, vol. 60, no. 6, 2017, 84–90, 10.1145/3065386.
- L. Li, X. Mu, S. Li, and H. Peng, “A review of face recognition technology”, IEEE Access, vol. 8, 2020, 139110–139120, 10.1109/ACCESS.2020.3011028.
- X. Li, Y. Xiang, and S. Li, “Combining convolutional and vision transformer structures for sheep face recognition”, Computers and Electronics in Agriculture, vol. 205, 2023, 107651, https://doi.org/10.1016/j.compag.2023.107651.
- O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”. In: X. Xie, M. W. Jones, and G. K. L. Tam, eds., Proceedings of the British Machine Vision Conference (BMVC), 2015, 41.1–41.12, 10.5244/C.29.41.
- B. S. Peng Lu and L. Xu, “Human face recognition based on convolutional neural network and augmented dataset”, Systems Science & Control Engineering, vol. 9, no. sup2, 2021, 29–37, 10.1 080/21642583.2020.1836526.
- F. Samaria and A. Harter, “Parameterisation of a stochastic model for human face identification”, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, 1994, 138–142, 10.110 9/ACV.1994.341300.
- F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition and clustering”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 815–823, 10.1109/CVPR.2015.7298682.
- Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint identification-verification”. In: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds., Advances in Neural Information Processing Systems, vol. 27, 2014.
- Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to humanlevel performance in face verification”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, 1701–1708, 10.1109/CVPR.2014.220.
- M. Turk and A. Pentland, “Face recognition using eigenfaces”. In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991, 586–591, 10.1109/CVPR.1991.139758.
- P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features”, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, 2001, I–I, 10.1109/CVPR.2001.990517.
- K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks”, IEEE Signal Processing Letters, vol. 23, no. 10, 2016, 1499–1503, 10.1109/LSP.2016.2603342.
