Have a personal or library account? Click to login

References

  1. K. Bennani-Smires, C. Musat, A. Hossmann, M. Baeriswyl, and M. Jaggi, “Simple Unsupervised Keyphrase Extraction using Sentence Embeddings”, arXiv e-prints, vol. 1, 2018, 1–9, doi: 10.4 8550/arXiv.1801.04470.
  2. T. Y. Christyawan and W. Firdaus Mahmudy, “Text Classification and Visualization on News Title Using Self Organizing Map”, 2018 International Conference on Sustainable Information Engineering and Technology (SIET), 2018, doi: 10.1109/SIET.2018.8693189.
  3. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, CoRR, 2018, doi: 10.48550/arXiv.1810.04805.
  4. R. Dzisevič and D. Šešok, “Text Classification using Different Feature Extraction Approaches”, 2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), 2019, doi: 10.1109/eStream.2019.8732167.
  5. M. R. Faisal, I. Budiman, F. Abadi, D. T. Nugrahadi, M. Haekal, and I. Sutedja, “Applying Features Based on Word Embedding Techniques to 1D CNN for Natural Disaster Messages Classification”, 2022 5th International Conference of Computer and Informatics Engineering (IC2IE), 2022, doi: 10.1109/IC2IE56416.2022.9970188.
  6. E. Frank and R. R. Bouckaert, “Naive Bayes for Text Classification with Unbalanced Classes”. In: Knowledge Discovery in Databases: PKDD 2006: 10th European Conference on Principles and Practice of Knowledge Discovery in Databases Berlin, Germany, September 18-22, 2006 Proceedings 10, vol. 1, 2006, 503–510.
  7. S. X. Gao Zhengjie, Feng Ao and W. Xi, “TargetDependent Sentiment Classification With BERT”, IEEE Access, 2019, doi: 10.1109/ACCESS.2019. 2946594.
  8. F. Heimerl, S. Lohmann, S. Lange, and T. Ertl, “Word Cloud Explorer: Text Analytics Based on Word Clouds”, 2014 47th Hawaii International Conference on System Sciences, 2014, doi: 10.110 9/HICSS.2014.231.
  9. R. Jing, “A Self-attention Based LSTM Network for Text Classification”, IOP Publishing, 2019, doi: 10.1088/1742-6596/1207/1/012008.
  10. S.-B. Kim, K.-S. Han, H.-C. Rim, and S. H. Myaeng, “Some Effective Techniques for Naive Bayes Text Classification”, IEEE transactions on knowledge and data engineering, vol. 18, no. 11, 2006, 1457–1466.
  11. K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, D. Brown, L. Id, and Barnes, “Text Classification Algorithms: A Survey”, Information (Switzerland), 2019, doi: 10.3390/info10040150.
  12. P. S. Navada Arundhati, Ansari Aamir Nizam and S. Balwant, “Overview of use of decision tree algorithms in machine learning”, 2011 IEEE Control and System Graduate Research Colloquium, 2011, doi: 10.1109/ICSGRC.2011.5991826.
  13. M. Osowski, K. Lorenc, P. Drozda, R. Scherer, K. Szałapak, K. Komar-Komarowski, J. Szymański, and A. Sobecki, “Previous Opinions is All You Need—Legal Information Retrieval System”. In: International Conference on Computational Collective Intelligence, 2023, 57–67.
  14. S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic Keyword Extraction from Individual Documents”, Text Mining: Applications and Theory, 2010, doi: 10.1002/9780470689646.ch1.
  15. F. P. Shah and V. Patel, “A Review on Feature Selection and Feature Extraction for Text Classification”, 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2016, doi: 10.1109/Wi SPNET.2016.7566545.
  16. A. Sun, E.-P. Lim, and Y. Liu, “On Strategies for Imbalanced Text Classification Using SVM: A Comparative study”, Decision Support Systems, vol. 48, no. 1, 2009, 191–201.
  17. A. Talun, P. Drozda, L. Bukowski, and R. Scherer, “FastText and XGBoost Content-Based Classification for Employment Web Scraping”. In: International Conference on Artificial Intelligence and Soft Computing, 2020, 435–444.
  18. J. W. Xuelian Deng, Yuqing Li and J. Zhang, “Feature Selection for Text Classification: A Review”, Multimedia Tools and Applications, 2019, doi: 10.1007/s11042-018-6083-5.
  19. L. Yang, “A Brief Introduction of the Text Classification Methods”, 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), 2022, doi: 10.1109/EEBD A53927.2022.9744845.
  20. G. Yenduri, M. Ramalingam, G. ChemmalarSelvi, Y. Supriya, G. Srivastava, P. K. R. Maddikunta, G. DeeptiRaj, R. H. Jhaveri, B. Prabadevi, W. Wang, A. V. Vasilakos, and T. R. Gadekallu, “Generative Pre-trained Transformer: A Comprehensive Review on Enabling Technologies, Potential Applications, Emerging Challenges, and Future Directions”, ArXiv, 2023, doi: 10.48550/arXiv.2 305.10435.
  21. P. L. Ying Chen and C. P. Teo, “Regularised Text Logistic Regression: Key Word Detection and Sentiment Classification for Online Reviews”, arXiv e-prints, 2020, doi: 10.48550/arXiv.2009. 04591.
  22. Y. Zhang, “Research on Text Classification Method Based on LSTM Neural Network Model”, 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), 2021, doi: 10.1109/IPEC51340.2021.9421225.
DOI: https://doi.org/10.14313/jamris-2025-004 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 33 - 41
Submitted on: Apr 27, 2024
Accepted on: Nov 1, 2024
Published on: Mar 31, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Paulina Puchalska, Kacper Krzemiński, Maksymilian Lis, Rafał Scherer, Paweł Drozda, Kajetan Komar-Komarowski, Konrad Szałapak, Andrzej Sobecki, Tomasz Zymkowski, Julian Szymański, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.