Have a personal or library account? Click to login

Controllability, Observability and Transfer Matrix Zeroing of the 2D Roesser Model

Open Access
|Mar 2025

References

  1. M. Dymkov, K. Galkowski, E. Rogers, V. Dymkou, and S. Dymkou, “Modeling and control of a sorption process using 2D systems theory”. In: The 2011 International Workshop on Multidimensional (nD) Systems, Poitiers, France, 2011, 1–6.
  2. Q. Y. Xu, X. D. Li, and M. M. Lv, “Adaptive ILC for tracking non‐repetitive reference trajectory of 2‐D FMM under random boundary condition”, International Journal of Control, Automation and Systems, vol. 14, no. 2, 2016, 478–485.
  3. E. Fornasini, “A 2‐D systems approach to river pollution modelling”, Multidimensional Systems and Signal Processing, vol. 2, no. 3, 1991, 233–265.
  4. C. Chen, J. Tsai, and L. Shieh, “Modeling of variable coefficient Roesser model for systems described by second‐order partial differential equation”, Circuits, Systems and Signal Processing, vol. 22, 2003, 423–463.
  5. C. Ahn, P. Shi, and M. V. Basin, “Two‐dimensional dissipative control and filtering for Roesser model”, IEEE Transactions on Automatic Control, vol. 60, no. 7, 2015, 1745–1759.
  6. R. P. Roesser, “A discrete state‐space model for linear image processing”, IEEE Trans. Autom. Contr., vol. AC‐20, no. 1, 1975, 1–10.
  7. E. Fornasini and G. Marchesini, “State‐space realization theory of two‐dimensional filters”, IEEE Transactions on Automatic Control, vol. AC‐21, 1976, 484–491.
  8. E. Fornasini and G. Marchesini, “Double indexed dynamical systems”, Mathematical Systems Theory, no. 12, 1978, 59–72.
  9. J. Kurek, “The general state‐space model for a two‐dimensional linear digital systems”, IEEE Transactions on Automatic Control, vol. AC‐30, 1985, 600–602.
  10. N. K. Bose, Applied Multidimensional Systems Theory, Van Nonstrand Reinhold Co: New York, 1982.
  11. N. K. Bose, Multidimensional Systems Theory Progress, Directions and Open Problems, D. Reidel Publishing Co.: Dordrecht, 1985.
  12. T. Kaczorek, Two-Dimensional Linear Systems, Springer Verlag: London, 1985.
  13. K. Galkowski, State space realizations of linear 2D systems with extensions to the general nD (n > 2) case, Springer Verlag: London, 2001.
  14. J. Zhang and Y. Sun, “Practical exponential stabil‐ ity of two dimensional nonlinear switched pos‐ itive systems in the roesser model”, Journal of Systems Science and Complexity, vol. 36, 2023, 1103–1115.
  15. T. Ooba, “Asymptotic stability of two‐ dimensional discrete systems with saturation nonlinearities”, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 1, 2013, 178–188.
  16. D. D. Tian, S. T. Liu, and W. Wang, “Global expo‐ nential stability of 2D switched positive nonlin‐ ear systems described by the Roesser model”, International Journal of Robust and Nonlinear Control, vol. 29, no. 7, 2019, 2272–2282.
  17. S. Huang and Z. Xiang, “Delay‐dependent stabil‐ ity for discrete 2D switched systems with state delays in the Roesser model”, Circuits, Systems, and Signal Processing, vol. 32, no. 6, 2013, 2821–2837.
  18. T. Kaczorek and K. Rogowski, “Positivity and stabilization of fractional 2D linear systems described by the Roesser model”, Int. J. Appl. Math. Comput. Sci., vol. 20, no. 1, 2010, 85–92.
  19. T. Kaczorek, “Asymptotic stability of positive 2D linear systems”. In: XIII Scientific Conference Computer Applications in Electrical Engineering, April 14‐16, Poznan, 2008, 1–5.
  20. T. Kaczorek, “Asymptotic stability of positive 1D and 2D linear systems, Recent Advances in Con‐ trol and Automation”, Acad. Publ. House EXIT, 2008, 41–52.
  21. T. Kaczorek, “LMI approach to stability of 2D positive systems”, Multidimensional Systems and Signal Processing, vol. 20, no. 1, 2009, 39–54.
  22. M. Twardy, “An LMI approach to checking sta‐ bility of 2D positive systems”, Bull. Acad. Pol. Sci. Techn., vol. 55, no. 4, 2007, 385–395.
  23. M. Buslowicz, “Robust stability of positive discrete‐time linear systems with multiple delays with linear unity rank uncertainty structure on non‐negative perturbation matrices”, Bull. Acad. Pol. Sci. Techn., vol. 55, no. 1, 2007, 1–5.
  24. M. Buslowicz, “Robust stability of convex com‐ bination of two fractional degree characteristic polynomials”, Acta Mechanica et Automatica, vol. 2, no. 2, 2008, 5–10.
  25. J. E. Kurek, “Controllability of the 2‐D Roesser model”, Multidimensional Systems and Signal Processing, vol. 1, 1990, 381–387.
  26. T. Kaczorek. Controllability and minimum energy control of positive 2D systems, 275–309. Springer London, London, 2002.
  27. J. Klamka, “Controllability of 2‐d linear systems”. In: P. M. Frank, ed., Advances in Control, London, 1999, 319–326.
  28. K. Galkowski, E. Rogers, and D. H. Owens, “Matrix rank based conditions for reachability/controllability of discrete linear repetitive processes”, Linear Algebra and Its Applications, vol. 275‐27, 1998, 201–224.
  29. E. Rogers, K. Galkowski, and D. H. Owens. Controllability, Observability, Poles and Zeros, 177–234. Springer Berlin Heidelberg, Berlin, Heidel‐ berg, 2007.
  30. R. Eising, “Controllability and observability of 2‐ D systems”, IEEE Transactions on Automatic Control, vol. 24, no. 1, 1979, 132–133.
  31. T. Kaczorek, Positive 1D and 2D Systems, Springer‐Verlag: London, 2001.
  32. J. Tokarzewski. A General Solution to the OutputZeroing Problem, 65–105. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
  33. T. Kaczorek and K. Borawski, “Output zeroing of the descriptor continuous‐time linear systems”. In: R. Szewczyk, C. Zieliński, M. Kaliczyńska, and V. Bučinskas, eds., Automation 2023: Key Challenges in Automation, Robotics and Measurement Techniques, Cham, 2023, 3–12.
DOI: https://doi.org/10.14313/jamris-2025-001 | Journal eISSN: 2080-2145 | Journal ISSN: 1897-8649
Language: English
Page range: 1 - 6
Submitted on: Mar 30, 2024
Accepted on: Apr 8, 2024
Published on: Mar 31, 2025
Published by: Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Tadeusz Kaczorek, Krzysztof Rogowski, published by Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.