References
- Ahn, W.-Y. , Haines, N. , & Zhang, L. (2017). Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1, 24–57. DOI: https://doi.org/10.1162/CPSY_a_00002, PMID: 29601060, PMCID: PMC5869013
- Ahn, W.-Y. , Krawitz, A. , Kim, W. , Busemeyer, J. R. , & Brown, J. W. (2013). A model-based fMRI analysis with hierarchical Bayesian parameter estimation. Decision, 1(S), 8–23. DOI: https://doi.org/10.1037/2325-9965.1.S.8
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.
- Camerer, C. , & Ho, T.-H. (1999). Experience-weighted attraction learning in normal form games. Econometrica, 67(4), 827–874. DOI: https://doi.org/10.1111/1468-0262.00054
- Camerer, C. F. (2003). Behavioral game theory: Experiments in strategic interaction. Princeton, NJ: Princeton University Press.
- Camerer, C. F. , Ho, T.-H. , & Chong, J.-K. (2002). Sophisticated experience-weighted attraction learning and strategic teaching in repeated games. Journal of Economic Theory, 104(1), 137–188. DOI: https://doi.org/10.1006/jeth.2002.2927
- Canini, K. R. , Shashkov, M. M. , & Griffiths, T. L. (2010). Modeling transfer learning in human categorization with the hierarchical Dirichlet process. Retrieved from https://icml.cc/Conferences/2010/papers/180.pdf
- Cheung, Y.-W. , & Friedman, D. (1997). Individual learning in normal form games: Some laboratory results. Games and Economic Behavior, 19(1), 46–76. DOI: https://doi.org/10.1006/game.1997.0544
- Chiu, P. H. , Kayali, M. A. , Kishida, K. T. , Tomlin, D. , Klinger, L. G. , Klinger, M. R. , & Montague, P. R. (2008). Self responses along cingulate cortex reveal quantitative neural phenotype for high- functioning autism. Neuron, 57(3), 463–473. DOI: https://doi.org/10.1016/j.neuron.2007.12.020, PMID: 18255038, PMCID: PMC4512741
- Collins, A. G. (2018). The tortoise and the hare: Interactions between reinforcement learning and working memory. Journal of Cognitive Neuroscience, 30(10), 1422–1432. DOI: https://doi.org/10.1162/jocn_a_01238, PMID: 29346018
- Cools, R. , Clark, L. , Owen, A. M. , & Robbins, T. W. (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. Journal of Neuroscience, 22(11), 4563–4567. DOI: https://doi.org/10.1523/JNEUROSCI.22-11-04563.2002, PMID: 12040063, PMCID: PMC6758810
- Crawley, D. , Zhang, L. , Jones, E. J. , Ahmad, J. , Caceres, A. S. J. , Oakley, B. , … Loth, E. (2019). Modeling cognitive flexibility in autism spectrum disorder and typical development reveals comparable developmental shifts in learning mechanisms. PsyArXiv. DOI: https://doi.org/10.31234/osf.io/h7jcm
- Daw, N. D. (2011). Trial-by-trial data analysis using computational models. In M. R. Delgado , E. A. Phelps , and T. W. Robbins (Eds.), Decision making, affect, and learning: Attention and performance XXIII. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199600434.003.0001
- den Ouden, H. E. , Daw, N. D. , Fernandez, G. , Elshout, J. A. , Rijpkema, M. , Hoogman, M. , … Cools, R. (2013). Dissociable effects of dopamine and serotonin on reversal learning. Neuron, 80(4), 1090–1100. DOI: https://doi.org/10.1016/j.neuron.2013.08.030, PMID: 24267657
- Doll, B. B. , Bath, K. G. , Daw, N. D. , & Frank, M. J. (2016). Variability in dopamine genes dissociates model-based and model-free reinforcement learning. Journal of Neuroscience, 36(4), 1211–1222. DOI: https://doi.org/10.1523/JNEUROSCI.1901-15.2016, PMID: 26818509, PMCID: PMC4728725
- Friston, K. J. , Stephan, K. E. , Montague, R. , & Dolan, R. J. (2014). Computational psychiatry: The brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148–158. DOI: https://doi.org/10.1016/S2215-0366(14)70275-5
- Galla, T. , & Farmer, J. D. (2013). Complex dynamics in learning complicated games. Proceedings of the National Academy of Sciences, 110(4), 1232–1236. DOI: https://doi.org/10.1073/pnas.1109672110, PMID: 23297213, PMCID: PMC3557065
- Gelman, A. , Carlin, J. B. , Stern, H. S. , Dunson, D. B. , Vehtari, A. , & Rubin, D. B. (2013). Bayesian data analysis. Boca Raton, FL: Chapman and Hall/CRC. DOI: https://doi.org/10.1201/b16018
- Geweke, J. (1991). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments (Vol. 196). Mineapolis, MN: Federal Reserve Bank of Minneapolis, Research Department. DOI: https://doi.org/10.21034/sr.148
- Hampton, A. N. , Bossaerts, P. , & O’Doherty, J. P. (2008). Neural correlates of mentalizing-related computations during strategic interactions in humans. Proceedings of the National Academy of Sciences, 105(18), 6741–6746. DOI: https://doi.org/10.1073/pnas.0711099105, PMID: 18427116, PMCID: PMC2373314
- Ho, T. H. , Camerer, C. F. , & Chong, J.-K. (2007). Self-tuning experience weighted attraction learning in games. Journal of Economic Theory, 133(1), 177–198. DOI: https://doi.org/10.1016/j.jet.2005.12.008
- Ho, T. H. , Wang, X. , & Camerer, C. F. (2007). Individual differences in EWA learning with partial payoff information. The Economic Journal, 118(525), 37–59. DOI: https://doi.org/10.1111/j.1468-0297.2007.02103.x
- Hunter, L. E. , Meer, E. A. , Gillan, C. M. , Hsu, M. , & Daw, N. D. (2019). Excessive deliberation in social anxiety. bioRxiv, 522433. DOI: https://doi.org/10.1101/522433
- Huys, Q. J. , Lally, N. , Faulkner, P. , Eshel, N. , Seifritz, E. , Gershman, S. J. , Roiser, J. P. (2015). Interplay of approximate planning strategies. Proceedings of the National Academy of Sciences, 112(10), 3098–3103.
- King-Casas, B. , Sharp, C. , Lomax-Bream, L. , Lohrenz, T. , Fonagy, P. , & Montague, P. R. (2008). The rupture and repair of cooperation in borderline personality disorder. Science, 321(5890), 806–810. DOI: https://doi.org/10.1126/science.1156902, PMID: 18687957, PMCID: PMC4105006
- Lee, D. (2013). Decision making: From neuroscience to psychiatry. Neuron, 78(2), 233–248. DOI: https://doi.org/10.1016/j.neuron.2013.04.008, PMID: 23622061, PMCID: PMC3670825
- Lee, D. , Seo, H. , & Jung, M. W. (2012). Neural basis of reinforcement learning and decision making. Annual Review of Neuroscience, 35, 287–308. DOI: https://doi.org/10.1146/annurev-neuro-062111-150512, PMID: 22462543, PMCID: PMC3490621
- Ly, A. , Boehm, U. , Heathcote, A. , Turner, B. M. , Forstmann, B. , Marsman, M. , & Matzke, D. (2017). A flexible and efficient hierarchical Bayesian approach to the exploration of individual differences in cognitive-model-based neuroscience. In A. A. Moustafa (Ed.), Computational models of brain and behavior (pp. 467–480). Hoboken, NJ: John Wiley. DOI: https://doi.org/10.1002/9781119159193.ch34
- Moutoussis, M. , Hopkins, A. K. , & Dolan, R. J. (2018). Hypotheses about the relationship of cognition with psychopathology should be tested by embedding them into empirical priors. Frontiers in Psychology, 9, 2504. DOI: https://doi.org/10.3389/fpsyg.2018.02504
- O’Doherty, J. P. , Hampton, A. , & Kim, H. (2007). Model-based fMRI and its application to reward learning and decision making. Annals of the New York Academy of Sciences, 1104(1), 35–53. DOI: https://doi.org/10.1196/annals.1390.022, PMID: 17416921
- Piray, P. , Dezfouli, A. , Heskes, T. , Frank, M. J. , & Daw, N. D. (2019). Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies. PLoS Computational Biology, 15(6), e1007043. DOI: https://doi.org/10.1371/journal.pcbi.1007043, PMID: 31211783, PMCID: PMC6581260
- Qi, H. , Ma, S. , Jia, N. , & Wang, G. (2015). Experiments on individual strategy updating in iterated snowdrift game under random rematching. Journal of Theoretical Biology, 368, 1–12. DOI: https://doi.org/10.1016/j.jtbi.2014.12.008, PMID: 25542641
- Rapoport, A. , & Amaldoss, W. (2000). Mixed strategies and iterative elimination of strongly dominated strategies: An experimental investigation of states of knowledge. Journal of Economic Behavior & Organization, 42(4), 483–521. DOI: https://doi.org/10.1016/S0167-2681(00)00101-3
- Safra, L. , Chevallier, C. , & Palminteri, S. (2019). Depressive symptoms are associated with blunted reward learning in social contexts. PLoS Computational Biology, 15(7), e1007224. DOI: https://doi.org/10.1371/journal.pcbi.1007224, PMID: 31356594, PMCID: PMC6699715
- Set, E. , Saez, I. , Zhu, L. , Houser, D. E. , Myung, N. , Zhong, S. , … Hsu, M. (2014). Dissociable contribution of prefrontal and striatal dopaminergic genes to learning in economic games. Proceedings of the National Academy of Sciences, 111(26), 9615–9620. DOI: https://doi.org/10.1073/pnas.1316259111, PMID: 24979760, PMCID: PMC4084431
- Shiffrin, R. M. , Lee, M. D. , Kim, W. , & Wagenmakers, E.-J. (2008). A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive Science, 32(8), 1248–1284. DOI: https://doi.org/10.1080/03640210802414826, PMID: 21585453
- Van den Bos, W. , van Dijk, E. , & Crone, E. A. (2012). Learning whom to trust in repeated social interactions: A developmental perspective. Group Processes & Intergroup Relations, 15(2), 243–256. DOI: https://doi.org/10.1177/1368430211418698
- Van Vliet, D. , De Vugt, M. , Bakker, C. , Pijnenburg, Y. , Vernooij-Dassen, M. , Koopmans, R. , & Verhey, F. (2013). Time to diagnosis in young-onset dementia as compared with late-onset dementia. Psychological Medicine, 43(2), 423–432. DOI: https://doi.org/10.1017/S0033291712001122, PMID: 22640548
- Watanabe, S. (2010). Asymptotic equivalence of Bayes cross valida tion and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11, 3571–3594.
- Wiecki, T. V. , Sofer, I. , & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7, 14. DOI: https://doi.org/10.3389/fninf.2013.00014, PMID: 23935581, PMCID: PMC3731670
- Wilcox, N. T. (2006). Theories of learning in games and heterogeneity bias. Econometrica, 74(5), 1271–1292. DOI: https://doi.org/10.1111/j.1468-0262.2006.00704.x
- Yoshida, W. , Seymour, B. , Friston, K. J. , & Dolan, R. J. (2010). Neural mechanisms of belief inference during cooperative games. Journal of Neuroscience, 30(32), 10744–10751. DOI: https://doi.org/10.1523/JNEUROSCI.5895-09.2010, PMID: 20702705, PMCID: PMC2967416
- Zhu, L. , Jiang, Y. , Scabini, D. , Knight, R. T. , & Hsu, M. (2019). Patients with basal ganglia damage show preserved learning in an economic game. Nature Communications, 10(1), 802. DOI: https://doi.org/10.1038/s41467-019-08766-1, PMID: 30778070, PMCID: PMC6379550
- Zhu, L. , Mathewson, K. E. , & Hsu, M. (2012). Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning. Proceedings of the National Academy of Sciences, 109(5), 1419–1424. DOI: https://doi.org/10.1073/pnas.1116783109, PMID: 22307594, PMCID: PMC3277161
- Zhu, L. , Walsh, D. , & Hsu, M. (2012). Neuroeconomic measures of social decision-making across the lifespan. Frontiers in Neuroscience, 6, 128. DOI: https://doi.org/10.3389/fnins.2012.00128, PMID: 23049494, PMCID: PMC3448294
