Have a personal or library account? Click to login
Lightning Danger Indexing in the Changing Climate Cover

Lightning Danger Indexing in the Changing Climate

Open Access
|Aug 2025

References

  1. Anderson G., Klugmann D., 2014. A European lightning density analysis using 5 years of ATDnet data. <em>Natural Hazards and Earth System Sciences</em> 14: 815–829. DOI <a href="https://doi.org/10.5194/nhess-14-815-2014." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5194/nhess-14-815-2014.</a>
  2. Betz H.D., Schmidt K., Laroche P., Blanchet P., Oettinger W.P., Defer E., Dziewit z., Konarski J., 2009. LINET – An international lightning detection network in Europe. <em>Atmospheric Research</em> 91: 564–573. DOI <a href="https://doi.org/10.1016/j.atmosres.2008.06.012." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.atmosres.2008.06.012.</a>
  3. Bielec-Bąkowska Z., 2003. Long-term variability of thunderstorm occurrence in Poland in the 20th century. <em>Atmospheric Research</em> 6(7–68): 35–52. DOI <a href="https://doi.org/10.1016/S0169-8095(03)00082-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0169-8095(03)00082-6.</a>
  4. Bodzak P., 2006. <em>Detekcja i lokalizacja wyładowań atmosferycznych</em>. Instytut Meteorologii i Gospodarki Wodnej: 135, Warszawa.
  5. Bruning E., MacGorman D., 2013. Theory and observations of controls on lightning flash size spectra. <em>Journal of the Atmospheric Sciences</em> 70(12): 4012–4029. DOI <a href="https://doi.org/10.1175/JAS-D-12-0289.1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1175/JAS-D-12-0289.1.</a>
  6. Changnon S.A., Changnon D., 2001. Long-term fluctuations in the thunderstorm activity in the United States. <em>Climatic Change</em> 50: 489–503. DOI <a href="https://doi.org/10.1023/A:1010651512934." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1010651512934.</a>
  7. Curran E.B., Holle R.L., López R.E., 2000. Lightning casualties and damages in the United States from 1959 to 1994. <em>Journal of Climate</em> 13: 3448–3464. DOI10.1175/1520-0442(2000)013&lt;3448:LCADIT&gt;2.0.CO;2.
  8. Devados S.L., O’Rourke J., 2011. <em>Discrete and computational geometry</em>. Princeton University Press, Princeton, New Jersey 08540, USA.
  9. Diendorfer G., 2008. Some comments on the achievable accuracy of local ground flash density values. In: <em>Proceedings of 29th International Conference on Lightning Protection</em>. Uppsala: 2-8-1–2-8-6.
  10. Dotzek N., Groenemeijer P.H., Feuerstein B., Holzer A.M., 2009. Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. <em>Atmospheric Research</em> 93: 575–586. DOI <a href="https://doi.org/10.1016/j.atmosres.2008.10.020." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.atmosres.2008.10.020.</a>
  11. ESRI ArcGIS Pro, Redlands, California, USA. Online: www.esri.com/en-us/arcgis/products/arcgis-pro/overview(accessed 2.09.2024).
  12. Feudale L., Manzato A., Micheletti S., 2013. A cloud-to-ground lightning climatology for north-eastern Italy. <em>Advances in Science and Research</em> 10: 77–84. DOI <a href="https://doi.org/10.5194/asr-10-77-2013." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5194/asr-10-77-2013.</a>
  13. Gajda W., 2021. System PERUN działa już 20 lat. Rola IMGW w Monitorowaniu Burz. IMGW-PIB/Centrum Hydrolo-giczno-Meteorologicznej Sieci Pomiarowo-Obserwacyjnej. Wydział Teledetekcji Naziemnej.
  14. Groenemeijer P.H., Dotzek N., Stel F., Brooks H.E., Doswell C.A., III, Elsom D.M., Giaiotti D., Gilbert A., Holzer A., Meaden T., Salek M., Teittinen J., Behrendt J., 2004.ESWD – a standardized, flexible data format for severe weather reports. Preprints, <em>Third European Conference on Severe Storms</em>, León, Spain, European Severe Storms Laboratory. Online: www.researchgate.net/publication/224780785_ESWD__A_Standardized_Flexible_Data_Format_for_Severe_Weather_Reports(accessed 2.09.2024).
  15. Kolendowicz L., 2006. The influence of synoptic situations on the occurrence of days with thunderstorms during a year in the territory of Poland. <em>International Journal of Climatology</em> 26: 1803–1820. DOI <a href="https://doi.org/10.1002/joc.1348." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/joc.1348.</a>
  16. Krider E.P., Noggle R.C., Pifer A.E., Vance D.L., 1980. Lightning direction-finding systems for forest fire detection. <em>Bulletin of American Meteorological Society</em> 61: 980–986. DOI10.1175/1520-0477(1980)061&lt;0980:LDFSFF&gt;2.0.CO;2.
  17. Mäkelä A., Enno S.E., Haapalainen J., 2014. Nordic lightning information system: Thunderstorm climate of northern Europe for the period 2002–2011. <em>Atmospheric Research</em> 139: 46–61. DOI <a href="https://doi.org/10.1016/j.atmosres.2014.01.008." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.atmosres.2014.01.008.</a>
  18. MunichRe. 2019. NatCatSERVICE – The natural catastrophe loss database. Online: www.munichre.com/en/reinsurance/business/non-life/natcatservice/index.html (accessed 18 April 2025).
  19. Nag A., Murphy M., Cummins K., Pifer A., Cramer J., 2014. Recent Evolution of the U.S. National Lightning Detection Network. In: <em>23rd International Lightning Detection Conference</em>, 18–19 March 2014, <em>5th International Lightning Meteorology Conference</em>, 20–21 March 2014, Tucson, Arizona, USA.
  20. Novák P., Kyznarová H., 2011. Climatology of lightning in the Czech Republic. <em>Atmospheric Research</em> 100: 318–333. DOI <a href="https://doi.org/10.1016/j.atmosres.2010.08.022." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.atmosres.2010.08.022.</a>
  21. Poelman D., Schulz W., Diendorfer G., Bernardi M., 2016. The European lightning location system EUCLID – Part 2: Observations. <em>Natural Hazards and Earth System Sciences</em> 16(2): 607–616. DOI <a href="https://doi.org/10.5194/nhess-16-607-2016." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5194/nhess-16-607-2016.</a>
  22. Pohjola H., Mäkelä A., 2013. The comparison of GLD360 and EUCLID lightning location systems in Europe. <em>Atmospheric Research</em> 123: 117–128. DOI <a href="https://doi.org/10.1016/j.atmosres.2012.10.019." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.atmosres.2012.10.019.</a>
  23. Python documentation. Online: www.python.org/doc/(accessed 2.09.2024).
  24. Rakov V.A., Uman M.A., 2003. <em>Lightning: Physics and effects</em>. Cambridge University Press. Cambridge CB2 8EA, United Kingdom.
  25. R Core Team, 2014: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Online: www.R-project.org/(accessed 2.09.2024).
  26. Różdżyński K., 1996. Miernictwo meteorologiczne. Tom 2. Wyd. 1, IMGW seria Instrukcje i podręczniki.
  27. Schulz W., Cummins K., Diendorfer G., Dorninger M., 2005. Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. <em>Journal of Geophysical Research</em> 110: D09101. DOI10.1029/2004JD005332.
  28. Sulik S., 2022. A cloud-to-ground lightning density due to progressing climate change in Poland. <em>Environmental Challenges</em> 9: 100597. DOI <a href="https://doi.org/10.1016/j.envc.2022.100597." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envc.2022.100597.</a>
  29. Taszarek M., Czernecki B., Kozioł a., 2015. A cloud-to-ground lightning climatology for Poland. <em>Monthly Weather Review</em> 143: 4285–4304. DOI <a href="https://doi.org/10.1175/MWR-D-15-0206.1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1175/MWR-D-15-0206.1.</a>
  30. Taszarek M., Allen J., Pucik T., Groenemeijer P.H, Czernecki B., Kolendowicz L., Lagouvardos K., Kotroni V., Schulz W., 2019. A Climatology of Thunderstorms across Europe from a Synthesis of Multiple Data Sources. <em>Journal of Climate</em> 32.6: 1813-1837.
  31. Vaisala documentation. Online: www.vaisala.com/en/search?k=&amp;content_group=products%20and%20services(accessed 2.09.2024).
  32. Wang B., Yang Y., Ding Q.-H., Murakami H., huang F., 2010. Climate control of the global tropical storm days (1965–2008). <em>Geophysical Research Letters</em> 37: L07704. 2010L077041of5. DOI <a href="https://doi.org/10.1029/2010GL042487." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1029/2010GL042487.</a>
  33. Wapler K., 2013. High-resolution climatology of lightning characteristics within Central Europe. <em>Meteorology and Atmospheric Physics</em> 122: 175–184. DOI <a href="https://doi.org/10.1007/s00703-013-0285-1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00703-013-0285-1.</a>
DOI: https://doi.org/10.14746/quageo-2025-0029 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 95 - 109
Submitted on: Oct 3, 2025
Published on: Aug 7, 2025
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2025 Rafał Iwański, Agnieszka Wypych, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution 4.0 License.