Table of Contents
- Introduction to Reinforcement Learning
- Multi-armed Bandits
- Contextual Bandits
- Makings of the Markov Decision Process
- Solving the Reinforcement Learning Problem
- Deep Q-Learning at Scale
- Policy Based Methods
- Model-Based Methods
- Multi-Agent Reinforcement Learning
- Machine Teaching
- Generalization and Domain Randomization
- Meta-reinforcement learning
- Other Advanced Topics
- Autonomous Systems
- Supply Chain Management
- Marketing, Personalization and Finance
- Smart City and Cybersecurity
- Challenges and Future Directions in Reinforcement Learning

