Have a personal or library account? Click to login
Python Data Cleaning and Preparation Best Practices Cover

Python Data Cleaning and Preparation Best Practices

A practical guide to organizing and handling data from various sources and formats using Python

Paid access
|Oct 2024
Product purchase options

Table of Contents

  1. Data Ingestion Techniques
  2. Importance of Data Quality
  3. Data Profiling – Understanding Data Structure, Quality, and Distribution
  4. Cleaning Messy Data and Data Manipulation
  5. Data Transformation – Merging and Concatenating
  6. Data Grouping, Aggregation, Filtering, and Applying Functions
  7. Data Sinks
  8. Detecting and Handling Missing Values and Outliers
  9. Normalization and Standardization
  10. Handling Categorical Features
  11. Consuming Time Series Data
  12. Text Preprocessing in the Era of LLMs
  13. Image and Audio Preprocessing with LLMs
PDF ISBN: 978-1-83763-290-9
Publisher: Packt Publishing Limited
Copyright owner: © 2024 Packt Publishing Limited
Publication date: 2024
Language: English
Pages: 456