Table of Contents
- Introducing Machine Learning
- Managing and Understanding Data
- Lazy Learning – Classification Using Nearest Neighbors
- Probabilistic Learning – Classification Using Naive Bayes
- Divide and Conquer – Classification Using Decision Trees and Rules
- Forecasting Numeric Data – Regression Methods
- Black-Box Methods – Neural Networks and Support Vector Machines
- Finding Patterns – Market Basket Analysis Using Association Rules
- Finding Groups of Data – Clustering with k-means
- Evaluating Model Performance
- Being Successful with Machine Learning
- Advanced Data Preparation
- Challenging Data – Too Much, Too Little, Too Complex
- Building Better Learners
- Making Use of Big Data

