Have a personal or library account? Click to login
Learning PySpark Cover

Learning PySpark

Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0

Paid access
|Mar 2017
Product purchase options

Table of Contents

  1. Understanding Spark
  2. Installing Spark
  3. Resilient Distributed Datasets
  4. DataFrames
  5. Prepare Data for Modeling
  6. Introducing MLlib
  7. Introducing the ML Package
  8. GraphFrames
  9. TensorFrames
  10. Polyglot Persistence with Blaze
  11. Structured Streaming
  12. Free Spark Cloud Offering
  13. Packaging Spark Applications
PDF ISBN: 978-1-78646-625-9
Publisher: Packt Publishing Limited
Copyright owner: © 2017 Packt Publishing Limited
Publication date: 2017
Language: English
Pages: 274