Have a personal or library account? Click to login
New Hermite Hadamard type inequalities for twice differentiable convex mappings via Green function and applications Cover

New Hermite Hadamard type inequalities for twice differentiable convex mappings via Green function and applications

Open Access
|Feb 2017

References

  1. [1] S. S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5) (1998), 91-95.10.1016/S0893-9659(98)00086-X
  2. [2] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  3. [3] S. Hussain, M.I. Bhatti and M. Iqbal, Hadamard-type inequalities for s-convex functions I, Punjab Univ. Jour. of Math., Vol.41, pp:51-60, (2009).
  4. [4] U.S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp, 147 (2004), 137-146.10.1016/S0096-3003(02)00657-4
  5. [5] J. Pečarić, F. Proschan and Y.L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991.
  6. [6] C.E.M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2) (2000), 51-55.10.1016/S0893-9659(99)00164-0
  7. [7] M. Z. Sarikaya, A. Saglam and H. YYıldırım, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, (submitted for publication) arXiv:1005.0451.
  8. [8] M. Z. Sarikaya and N. Aktan, On the generalization of some integral inequalities and their applications, Mathematical and Computer Modelling, 54 (2011), 2175-2182.10.1016/j.mcm.2011.05.026
  9. [9] M. Z. Sarikaya, A. Saglam and H. YYıldırım, Some new integral inequalities for twice differentiable convex mappings, (submitted for publication) arXiv:1005.0453v1.
  10. [10] K-L. Tseng, G-S. Yang and K-C. Hsu, Some inequalities for differentiable mappings and applications to Fejer inequality and weighted trapozidal formula, Taiwanese J. Math. 15(4), pp:1737-1747, 2011.10.11650/twjm/1500406376
  11. [11] G.S. Yang, D.Y. Hwang, K.L. Tseng, Some inequalities for differentiable convex and concave mappings, Comput. Math. Appl. 47 (2004), 207-216.10.1016/S0898-1221(04)90017-X
  12. [12] C.-L. Wang, X.-H. Wang, On an extension of Hadamard inequality for convex functions, Chin. Ann. Math. 3 (1982) 567-570.
  13. [13] S. Wasowicz and A. Witkonski, On some inequality of Hermite-Hadamard type, Opuscula Math. 32(2), (2012), pp:591-600.10.7494/OpMath.2012.32.3.591
  14. [14] B-Y, Xi and F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat.. 42(3), 243-257 (2013).
  15. [15] B-Y, Xi and F. Qi, Hermite-Hadamard type inequalities for functions whose derivatives are of convexities, Nonlinear Funct. Anal. Appl.. 18(2), 163-176 (2013). 10.1186/1029-242X-2013-451
Language: English
Page range: 107 - 118
Submitted on: Mar 15, 2016
Accepted on: Jun 20, 2016
Published on: Feb 4, 2017
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Samet Erden, Mehmet Zeki Sarikaya, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.