Have a personal or library account? Click to login
Inclusion properties of Generalized Integral Transform using Duality Techniques Cover

Inclusion properties of Generalized Integral Transform using Duality Techniques

By: Satwanti Devi and  A. Swaminathan  
Open Access
|Feb 2017

References

  1. [1] R. Aghalary, A. Ebadian and S. Shams, Geometric properties of some linear operators de_ned by convolution, Tamkang J. Math. 39 (2008), no. 4, 325-334.
  2. [2] R. M. Ali, A. O. Badghaish, V. Ravichandran and A. Swaminathan, Starlikeness of integral transforms and duality, J. Math. Anal. Appl. 385 (2012), no. 2, 808-822.
  3. [3] R. M. Ali, M. M. Nargesi and V. Ravichandran, Convexity of integral transforms and duality, Complex Var. Elliptic Equ. 58 (2013), no. 11, 1569-1590.
  4. [4] R. M. Ali and V. Singh, Convexity and starlikeness of functions de_ned by a class of integral operators, Complex Variables Theory Appl. 26 (1995), no. 4, 299-309.
  5. [5] G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge Univ. Press, Cambridge, 1999.
  6. [6] T. Bulboacă, Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publications, Cluj-Napoca, 2005.
  7. [7] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.10.1090/S0002-9947-1969-0232920-2
  8. [8] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745.
  9. [9] J. H. Choi, Y. C. Kim and M. Saigo, Geometric properties of convolution operators de_ned by Gaussian hypergeometric functions, Integral Transforms Spec. Funct. 13 (2002), no. 2, 117-130.
  10. [10] S. Devi and A. Swaminathan, Integral transforms of functions to be in a class of analytic functions using duality techniques, J. Complex Anal. 2014, Art. ID 473069, 10 pp.10.1155/2014/473069
  11. [11] S. Devi and A. Swaminathan, Order of Starlikeness and Convexity of certain integral transforms using duality techniques, 16 pages, Submitted for publication, (http://arxiv.org/abs/1406.6471).
  12. [12] S. Devi and A. Swaminathan, Starlikeness of the Generalized Integral Transform using Duality Techniques, 24 pages, Submitted for publication, (http://arxiv.org/abs/1411.5217).
  13. [13] S. Devi and A. Swaminathan, Convexity of the Generalized Integral Transform using Duality Techniques, Submitted for publication. (http://arxiv.org/abs/1411.5898)
  14. [14] S. S. Ding, Y. Ling and G. J. Bao, Some properties of a class of analytic functions, J. Math. Anal. Appl. 195 (1995), no. 1, 71-81.
  15. [15] A. Ebadian, R. Aghalary and S. Shams, Application of duality techniques to starlikeness of weighted integral transforms, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 2, 275-285.
  16. [16] R. Fournier and S. Ruscheweyh, On two extremal problems related to univalent functions, Rocky Mountain J. Math. 24 (1994), no. 2, 529-538.
  17. [17] Y. C. Kim and F. R_nning, Integral transforms of certain subclasses of analytic functions, J. Math. Anal. Appl. 258 (2001), no. 2, 466-489.
  18. [18] M. Liu, Properties for some subclasses of analytic functions, Bull. Inst. Math. Acad. Sinica 30 (2002), no. 1, 9-26.
  19. [19] S. S. Miller and P. T. Mocanu, Di_erential Subordinations, Dekker, New York, 2000.10.1201/9781482289817
  20. [20] S. S. Miller and P. T. Mocanu, A class of nonlinear averaging integral operators, J. Math. Anal. Appl. 197 (1996), no. 1, 318-323.
  21. [21] S. Ruscheweyh, Convolutions in geometric function theory, Séminaire de Mathématiques Supérieures, 83, Presses Univ. Montréal, Montreal, QC, 1982.
  22. [22] J. Stankiewicz and Z. Stankiewicz, Some applications of the Hadamard convolution in the theory of functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 40 (1986), 251-265 (1987).
  23. [23] S. Verma, S. Gupta and S. Singh, On an integral transform of a class of analytic functions, Abstr. Appl. Anal. 2012, Art. ID 259054, 10 pp. of Contemporary Mathematical Sciences, 11(1)(2016), 1-8.
Language: English
Page range: 91 - 106
Submitted on: Feb 15, 2016
Accepted on: Jun 16, 2016
Published on: Feb 4, 2017
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Satwanti Devi, A. Swaminathan, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.