Have a personal or library account? Click to login
Further Inequalities for Sequences and Power Series of Operators in Hilbert Spaces Via Hermitian Forms Cover

Further Inequalities for Sequences and Power Series of Operators in Hilbert Spaces Via Hermitian Forms

By: S. S. Dragomir  
Open Access
|Feb 2017

References

  1. [1] N. G. de Bruijn, Problem 12, Wisk. Opgaven, 21 (1960), 12-14.
  2. [2] M. L. Buzano Generalizzazione della diseguaglianza di Cauchy-Schwarz. (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31 (1971/73), 405-409 (1974).
  3. [3] S. S. Dragomir, Some refinements of Schwartz inequality, Simpozionul de Matematici şi Aplicaţii, Timişoara, Romania, 1-2 Noiembrie 1985, 13-16.
  4. [4] S. S. Dragomir, Grüss inequality in inner product spaces, The Australian Math Soc. Gazette, 26 (1999), No. 2, 66-70.
  5. [5] S. S. Dragomir, A generalization of Grüss' inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82.10.1006/jmaa.1999.6452
  6. [6] S. S. Dragomir, Some Grüss type inequalities in inner product spaces, J. Inequal. Pure & Appl. Math., 4(2) (2003), Article 42. (Online http://jipam.vu.edu.au/article.php?sid=280).
  7. [7] S. S. Dragomir, Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure & Appl. Math., 5(3) (2004), Article 76. (Online : http://jipam.vu.edu.au/article.php?sid=432).
  8. [8] S. S. Dragomir, New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, Austral. J. Math. Anal. & Applics., 1(1) (2004), Article 1. (Online: http://ajmaa.org/cgibin/paper.pl?string=nrstbiips.tex ).
  9. [9] S. S. Dragomir, On Bessel and Grüss inequalities for orthornormal families in inner product spaces, Bull. Austral. Math. Soc., 69(2) (2004), 327-340.10.1017/S0004972700036066
  10. [10] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc, New York, 2005, x+249 p.
  11. [11] S. S. Dragomir, Reverses of the Schwarz inequality in inner product spaces generalising a Klamkin- McLenaghan result, Bull. Austral. Math. Soc. 73(1)(2006), 69-78.10.1017/S0004972700038636
  12. [12] S. S. Dragomir, Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces. Nova Science Publishers, Inc., New York, 2007. xii+243 pp. ISBN: 978-1-59454-903-8; 1-59454-903-6 (Preprint http://rgmia.org/monographs/advancees2.htm)
  13. [13] S. S. Dragomir, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Demonstratio Mathematica, XL (2007), No. 2, 411-417.
  14. [14] S. S. Dragomir, Some new Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll., 11(e) (2008), Art. 12.
  15. [15] S. S. Dragomir, Inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll., 11(e) (2008), Art. 17.
  16. [16] S. S. Dragomir, Some inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll., 11(e) (2008), Art. 8.
  17. [17] S. S. Dragomir, Inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces , Aust. J. Math. Anal. & Appl. 6(2009), Issue 1, Article 7, pp. 1-58.
  18. [18] S. S. Dragomir, Some inequalities for power series of selfadjoint operators in Hilbert spaces via reverses of the Schwarz inequality. Integral Transforms Spec. Funct. 20 (2009), no. 9-10, 757-767.
  19. [19] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.10.1007/978-1-4614-1521-3_3
  20. [20] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1.10.1007/978-1-4614-1779-8_3
  21. [21] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces. Springer Briefs in Mathematics. Springer, 2013. x+120 pp. ISBN: 978-3-319-01447-0; 978-3-319-01448-7.
  22. [22] S. S. Dragomir, M. V. Boldea and C. Buşe, Norm inequalities of Čebyšev type for power series in Banach algebras, Preprint RGMIA Res. Rep. Coll., 16 (2013), Art. 73.
  23. [23] S. S. Dragomir and B. Mond, On the superadditivity and monotonicity of Schwarz's inequality in inner product spaces, Contributions, Macedonian Acad. of Sci and Arts, 15(2) (1994), 5-22.
  24. [24] S. S. Dragomir and B. Mond, Some inequalities for Fourier coeficients in inner product spaces, Periodica Math. Hungarica, 32 (3) (1995), 167-172.10.1007/BF01882192
  25. [25] S. S. Dragomir, J. Pečarić and J. Sándor, The Chebyshev inequality in pre-Hilbertian spaces. II. Proceedings of the Third Symposium of Mathematics and its Applications (Timişoara, 1989), 75-78, Rom. Acad., Timişoara, 1990. MR1266442 (94m:46033)
  26. [26] S. S. Dragomir and J. Sándor, The Chebyshev inequality in pre-Hilbertian spaces. I. Proceedings of the Second Symposium of Mathematics and its Applications (Timişoara, 1987), 61-64, Res. Centre, Acad. SR Romania, Timişoara, 1988. MR1006000 (90k:46048).
  27. [27] K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997.10.1007/978-1-4613-8498-4
  28. [28] S. Kurepa, Note on inequalities associated with Hermitian functionals, Glasnik Matematčki, 3(23) (1968), 196-205.
Language: English
Page range: 47 - 64
Submitted on: Mar 15, 2016
Accepted on: May 13, 2016
Published on: Feb 4, 2017
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 S. S. Dragomir, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.